scholarly journals Revealing charge-tunneling processes between a quantum dot and a superconducting island through gate sensing

2019 ◽  
Vol 100 (17) ◽  
Author(s):  
Jasper van Veen ◽  
Damaz de Jong ◽  
Lin Han ◽  
Christian Prosko ◽  
Peter Krogstrup ◽  
...  
Keyword(s):  
2000 ◽  
Vol 609 ◽  
Author(s):  
Seung Jae Baik ◽  
Koeng Su Lim

ABSTRACTTwo-dimensional (2D) Si quantum dot array was fabricated by oxidation of microcrystalline Si film deposited by photo chemical vapor deposition (photo-CVD). Average size of Si quantum dot was estimated to be 2.4nm and dot density 7 ∼ 8 ×1011 cm−2. Nanocrystal memory device with this 2D quantum dot array demonstrated negative differential resistance characteristics and single charge tunneling phenomena, which was observed as stepwise decrease of gate transconductance. Interface states at the oxidized surface of quantum dots were assumed to explain temperature dependence characteristics. This new process is adequate for functional device application of nanocrystal metal-oxide-semiconductor (MOS) memory.


2018 ◽  
Vol 8 (3) ◽  
pp. 31 ◽  
Author(s):  
Enrique Blair ◽  
Craig Lent

Quantum-dot cellular automata (QCA) is a low-power, non-von-Neumann, general-purpose paradigm for classical computing using transistor-free logic. Here, classical bits are encoded on the charge configuration of individual computing primitives known as “cells.” A cell is a system of quantum dots with a few mobile charges. Device switching occurs through quantum mechanical inter-dot charge tunneling, and devices are interconnected via the electrostatic field. QCA devices are implemented using arrays of QCA cells. A molecular implementation of QCA may support THz-scale clocking or better at room temperature. Molecular QCA may be clocked using an applied electric field, known as a clocking field. A time-varying clocking field may be established using an array of conductors. The clocking field determines the flow of data and calculations. Various arrangements of clocking conductors are laid out, and the resulting electric field is simulated. It is shown that that control of molecular QCA can enable feedback loops, memories, planar circuit crossings, and versatile circuit grids that support feedback and memory, as well as data flow in any of the ordinal grid directions. Logic, interconnect and memory now become indistinguishable, and the von Neumann bottleneck is avoided.


2012 ◽  
Vol 101 (1) ◽  
pp. 012104 ◽  
Author(s):  
T. Müller ◽  
J. Güttinger ◽  
D. Bischoff ◽  
S. Hellmüller ◽  
K. Ensslin ◽  
...  

2000 ◽  
Vol 638 ◽  
Author(s):  
Y.M. Niquet ◽  
C. Delerue ◽  
G. Allan ◽  
M. Lannoo

AbstractWe review the orthodox theory of single charge tunneling in a semiconductor quantum dot and we extend it to treat both single electron and hole charging effects. We analyze recent tunneling spectroscopy experiments. We show that for sufficiently large bias voltages V, both electrons and holes can tunnel into the quantum dot, leading to specific features in the I(V) curve. We present detailed simulations of the I(V) curves based a tight binding method for the electronic structure. A very good agreement is obtained with available experiments on InAs nanocrystals, allowing a complete interpretation of the spectra. Finally, we make some predictions concerning Si nanocrystals.


2019 ◽  
Author(s):  
O Mishchenko ◽  
A Schildan ◽  
O Sabri ◽  
M Patt
Keyword(s):  

2020 ◽  
pp. 144-148

Chaos synchronization of delayed quantum dot light emitting diode has been studied theortetically which are coupled via the unidirectional and bidirectional. at synchronization of chaotic, The dynamics is identical with delayed optical feedback for those coupling methods. Depending on the coupling parameters and delay time the system exhibits complete synchronization, . Under proper conditions, the receiver quantum dot light emitting diode can be satisfactorily synchronized with the transmitter quantum dot light emitting diode due to the optical feedback effect.


2001 ◽  
Vol 171 (8) ◽  
pp. 855
Author(s):  
Viktor M. Ustinov ◽  
N.A. Maleev ◽  
Aleksei E. Zhukov ◽  
A.R. Kovsh ◽  
A.V. Sakharov ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document