scholarly journals Gate-controlled unitary operation on flying spin qubits in quantum Hall edge states

2020 ◽  
Vol 102 (23) ◽  
Author(s):  
Takase Shimizu ◽  
Taketomo Nakamura ◽  
Yoshiaki Hashimoto ◽  
Akira Endo ◽  
Shingo Katsumoto
2016 ◽  
Vol 93 (7) ◽  
Author(s):  
Guang Yang ◽  
Chen-Hsuan Hsu ◽  
Peter Stano ◽  
Jelena Klinovaja ◽  
Daniel Loss

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Matheus I. N. Rosa ◽  
Massimo Ruzzene ◽  
Emil Prodan

AbstractTwisted bilayered systems such as bilayered graphene exhibit remarkable properties such as superconductivity at magic angles and topological insulating phases. For generic twist angles, the bilayers are truly quasiperiodic, a fact that is often overlooked and that has consequences which are largely unexplored. Herein, we uncover that twisted n-layers host intrinsic higher dimensional topological phases, and that those characterized by second Chern numbers can be found in twisted bi-layers. We employ phononic lattices with interactions modulated by a second twisted lattice and reveal Hofstadter-like spectral butterflies in terms of the twist angle, which acts as a pseudo magnetic field. The phason provided by the sliding of the layers lives on 2n-tori and can be used to access and manipulate the edge states. Our work demonstrates how multi-layered systems are virtual laboratories for studying the physics of higher dimensional quantum Hall effect, and can be employed to engineer topological pumps via simple twisting and sliding.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sungmin Kim ◽  
Johannes Schwenk ◽  
Daniel Walkup ◽  
Yihang Zeng ◽  
Fereshte Ghahari ◽  
...  

AbstractThe quantum Hall (QH) effect, a topologically non-trivial quantum phase, expanded the concept of topological order in physics bringing into focus the intimate relation between the “bulk” topology and the edge states. The QH effect in graphene is distinguished by its four-fold degenerate zero energy Landau level (zLL), where the symmetry is broken by electron interactions on top of lattice-scale potentials. However, the broken-symmetry edge states have eluded spatial measurements. In this article, we spatially map the quantum Hall broken-symmetry edge states comprising the graphene zLL at integer filling factors of $${{\nu }}={{0}},\pm {{1}}$$ ν = 0 , ± 1 across the quantum Hall edge boundary using high-resolution atomic force microscopy (AFM) and show a gapped ground state proceeding from the bulk through to the QH edge boundary. Measurements of the chemical potential resolve the energies of the four-fold degenerate zLL as a function of magnetic field and show the interplay of the moiré superlattice potential of the graphene/boron nitride system and spin/valley symmetry-breaking effects in large magnetic fields.


2020 ◽  
Vol 4 (11) ◽  
Author(s):  
Jiawei Yang ◽  
Kangyu Wang ◽  
Shi Che ◽  
Zachary J. Tuchfeld ◽  
Kenji Watanabe ◽  
...  

1997 ◽  
Vol 11 (22) ◽  
pp. 2593-2619 ◽  
Author(s):  
Sadao Takaoka ◽  
Kenichi Oto ◽  
Kazuo Murase

The quantum Hall effect for the GaAs/AlGaAs heterostrcture is investigated by an ac capacitance measurement between the two-dimensional electron system (2DES) and the gate on GaAs/AlGaAs. The capacitance minima at the quantum Hall plateaus are mainly determined not by the 2DES area under the gate but by the edge length of 2DES. There exists the high conductive region due to the edge states along the 2DES boundary, when the bulk conductivity σxx is small enough at low temperatures and high magnetic fields. From the temperature and frequency dependence of the capacitance minima, it is found that the measured capacitance consists of the contribution from the edge states and that of the bulk state, which is treated as a distributed circuit of a resistive plate with the conductivity σxx. The evaluated width of edge states from the capacitance is much larger than the magnetic length and the cyclotron radius expected from the one-electron picture. This wide width of edge states can be explained by the compressible-incompressible strip model, in which the screening effect is taken into account. Further the bulk conductivity of less than 10-12 S (S=1/Ω) is measured by the capacitance of the Corbino geometry sample, where the edge states are absent and the capacitance is determined by only σxx in this geometry. The localization of the bulk state is investigated by the obtained σxx.


1991 ◽  
Vol 05 (03) ◽  
pp. 509-527 ◽  
Author(s):  
MICHAEL STONE

The edge states of the quantum Hall effect carry representations of chiral current algebras and their associated groups. In the simplest case of a single filled Landau level, I demonstrate explicitly how the group action affects the many-body states, and why the Kac-Peterson cocycle appears in the group multiplication law. I show how these representations may be used to construct vertex operators which create localised edge excitations, and indicate how they are related to the bulk quasi-particles.


1993 ◽  
Vol 08 (04) ◽  
pp. 723-752 ◽  
Author(s):  
A.P. BALACHANDRAN ◽  
P. TEOTONIO-SOBRINHO

It is known that the 3D Chern–Simons interaction describes the scaling limit of a quantum Hall system and predicts edge currents in a sample with boundary, the currents generating a chiral U(1) Kac-Moody algebra. It is no doubt also recognized that, in a somewhat similar way, the 4D BF interaction (with B a two-form, dB the dual *j of the electromagnetic current, and F the electromagnetic field form) describes the scaling limit of a superconductor. We show in this paper that there are edge excitations in this model as well for manifolds with boundaries. They are the modes of a scalar field with invariance under the group of diffeomorphisms (diffeos) of the bounding spatial two-manifold. Not all diffeos of this group seem implementable by operators in quantum theory, the implementable group being a subgroup of volume-preserving diffeos. The BF system in this manner can lead to the w1+∞ algebra and its variants. Lagrangians for fields on the bounding manifold which account for the edge observables on quantization are also presented. They are the analogs of the (1+1)-dimensional massless scalar field Lagrangian describing the edge modes of an Abelian Chern-Simons theory with a disk as the spatial manifold. We argue that the addition of “Maxwell” terms constructed from F∧*F and dB∧*dB does not affect the edge states, and that the augmented Lagrangian has an infinite number of conserved charges—the aforementioned scalar field modes—localized at the edges. This Lagrangian is known to describe London equations and a massive vector field. A (3+1)-dimensional generalization of the Hall effect involving vortices coupled to B is also proposed.


2019 ◽  
Vol 116 (21) ◽  
pp. 10286-10290 ◽  
Author(s):  
Petr Stepanov ◽  
Yafis Barlas ◽  
Shi Che ◽  
Kevin Myhro ◽  
Greyson Voigt ◽  
...  

The quantum Hall effect has recently been generalized from transport of conserved charges to include transport of other approximately conserved-state variables, including spin and valley, via spin- or valley-polarized boundary states with different chiralities. Here, we report a class of quantum Hall effect in Bernal- or ABA-stacked trilayer graphene (TLG), the quantum parity Hall (QPH) effect, in which boundary channels are distinguished by even or odd parity under the system’s mirror reflection symmetry. At the charge neutrality point, the longitudinal conductance σxx is first quantized to 4e2/h at a small perpendicular magnetic field B⊥, establishing the presence of four edge channels. As B⊥ increases, σxx first decreases to 2e2/h, indicating spin-polarized counterpropagating edge states, and then, to approximately zero. These behaviors arise from level crossings between even- and odd-parity bulk Landau levels driven by exchange interactions with the underlying Fermi sea, which favor an ordinary insulator ground state in the strong B⊥ limit and a spin-polarized state at intermediate fields. The transitions between spin-polarized and -unpolarized states can be tuned by varying Zeeman energy. Our findings demonstrate a topological phase that is protected by a gate-controllable symmetry and sensitive to Coulomb interactions.


Sign in / Sign up

Export Citation Format

Share Document