Topological metal phases in irradiated graphene sandwiched by asymmetric ferromagnets

2021 ◽  
Vol 104 (4) ◽  
Author(s):  
Yafang Xu ◽  
Junshu Ma ◽  
Guojun Jin
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Milad Jangjan ◽  
Mir Vahid Hosseini

AbstractWe theoretically report the finding of a new kind of topological phase transition between a normal insulator and a topological metal state where the closing-reopening of bandgap is accompanied by passing the Fermi level through an additional band. The resulting nontrivial topological metal phase is characterized by stable zero-energy localized edge states that exist within the full gapless bulk states. Such states living on a quasi-one-dimensional system with three sublattices per unit cell are protected by hidden inversion symmetry. While other required symmetries such as chiral, particle-hole, or full inversion symmetry are absent in the system.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110198
Author(s):  
Feng Yin ◽  
Deqiu Dai

The new Cuban chondrite, Viñales, fell on February first, 2019 at Pinar del Rio, northwest of Cuba (22°37′10″N, 83°44′34″W). A total of about 50–100 kg of the meteorite were collected and the masses of individual samples are in a range 2–1100 g. Two polished thin sections were studied by optical microscope, Raman spectroscopy and electron microprobe analysis in this study. The meteorite mainly consists of olivine (Fa24.6), low-Ca pyroxene (Fs20.5), and troilite and Fe-Ni metal, with minor amounts of feldspar (Ab82.4-84.7). Three poorly metamorphosed porphyritic olivine-pyroxene and barred olivine chondrules are observed. The homogeneous chemical compositions and petrographic textures indicate that Viñales is a L6 chondrite. The Viñales has fresh black fusion crust with layered structure, indicating it experienced a high temperature of ∼1650°C during atmospheric entry. Black shock melt veins with width of 100–600 μm are pervasive in the Viñales and olivine, bronzite, and metal phases are dominate minerals of the shock melt vein. The shock features of major silicate minerals suggest a shock stage S3, partly S4, and the shock pressure could be >10 GPa.


Polyhedron ◽  
2021 ◽  
pp. 115571
Author(s):  
Wei-Wei Hong ◽  
Lu Lu ◽  
Mei Yue ◽  
Chunchao Huang ◽  
Mohd. Muddassir ◽  
...  

2018 ◽  
Vol 98 (5) ◽  
Author(s):  
Xue-Ying Mai ◽  
Yan-Qing Zhu ◽  
Zhi Li ◽  
Dan-Wei Zhang ◽  
Shi-Liang Zhu

Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 88
Author(s):  
Sokol ◽  
Tomilenko ◽  
Sokol ◽  
Zaikin ◽  
Bul’bak

The formation of hydrocarbons (HCs) upon interaction of metal and metal–carbon phases (solid Fe, Fe3C, Fe7C3, Ni, and liquid Fe–Ni alloys) with or without additional sources of carbon (graphite, diamond, carbonate, and H2O–CO2 fluids) was investigated in quenching experiments at 6.3 GPa and 1000–1400 °C, wherein hydrogen fugacity (fH2) was controlled by the Fe–FeO + H2O or Mo–MoO2 + H2O equilibria. The aim of the study was to investigate abiotic generation of hydrocarbons and to characterize the diversity of HC species that form in the presence of Fe/Ni metal phases at P–T–fH2 conditions typical of the upper mantle. The carbon donors were not fully depleted at experimental conditions. The ratio of H2 ingress and consumption rates depended on hydrogen permeability of the capsule material: runs with low-permeable Au capsules and/or high hydrogenation rates (H2O–CO2 fluid) yielded fluids equilibrated with the final assemblage of solid phases at fH2sample ≤ fH2buffer. The synthesized quenched fluids contained diverse HC species, predominantly light alkanes. The relative percentages of light alkane species were greater in higher temperature runs. At 1200 °C, light alkanes (C1 ≈ C2 > C3 > C4) formed either by direct hydrogenation of Fe3C or Fe7C3, or by hydrogenation of graphite/diamond in the presence of Fe3C, Fe7C3, and a liquid Fe–Ni alloy. The CH4/C2H6 ratio in the fluids decreased from 5 to 0.5 with decreasing iron activity and the C fraction increased in the series: Fe–Fe3C → Fe3C–Fe7C3 → Fe7C3–graphite → graphite. Fe3C–magnesite and Fe3C–H2O–CO2 systems at 1200 °C yielded magnesiowüstite and wüstite, respectively, and both produced C-enriched carbide Fe7C3 and mainly light alkanes (C1 ≈ C2 > C3 > C4). Thus, reactions of metal phases that simulate the composition of native iron with various carbon donors (graphite, diamond, carbonate, or H2O–CO2 fluid) at the upper mantle P–T conditions and enhanced fH2 can provide abiotic generation of complex hydrocarbon systems that predominantly contain light alkanes. The conditions favorable for HC formation exist in mantle zones, where slab-derived H2O-, CO2- and carbonate-bearing fluids interact with metal-saturated mantle.


2006 ◽  
Vol 166 (1-4) ◽  
pp. 665-670 ◽  
Author(s):  
E. V. Zhiganova ◽  
M. I. Oshtrakh ◽  
O. B. Milder ◽  
V. I. Grokhovsky ◽  
V. A. Semionkin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document