scholarly journals Temperature-dependent thermal transport of single molecular junctions from semiclassical Langevin molecular dynamics

2021 ◽  
Vol 104 (24) ◽  
Author(s):  
Gen Li ◽  
Bing-Zhong Hu ◽  
Nuo Yang ◽  
Jing-Tao Lü
Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2480
Author(s):  
Alessandro Di Pierro ◽  
Bohayra Mortazavi ◽  
Alberto Fina

Thermal conductivity of polymer-based (nano)composites is typically limited by thermal resistances occurring at the interfaces between the polymer matrix and the conductive particles as well as between particles themselves. In this work, the adoption of molecular junctions between thermally conductive graphene foils is addressed, aiming at the reduction of the thermal boundary resistance and eventually lead to an efficient percolation network within the polymer nanocomposite. This system was computationally investigated at the atomistic scale, using classical Molecular Dynamics, applied the first time to the investigation of heat transfer trough molecular junctions within a realistic environment for a polymer nanocomposite. A series of Molecular Dynamics simulations were conducted to investigate the thermal transport efficiency of molecular junctions in polymer tight contact, to quantify the contribution of molecular junctions when graphene and the molecular junctions are surrounded by polydimethylsiloxane (PDMS) molecules. A strong dependence of the thermal conductance was found in PDMS/graphene model, with best performances obtained with short and conformationally rigid molecular junctions. Furthermore, the adoption of the molecular linkers was found to contribute additionally to the thermal transport provided by the surrounding polymer matrix, demonstrating the possibility of exploiting molecular junctions in composite materials.


2020 ◽  
Vol 27 (12) ◽  
pp. 122704
Author(s):  
Yuzhi Zhang ◽  
Chang Gao ◽  
Qianrui Liu ◽  
Linfeng Zhang ◽  
Han Wang ◽  
...  

ACS Omega ◽  
2021 ◽  
Author(s):  
Khagendra Baral ◽  
Saro San ◽  
Ridwan Sakidja ◽  
Adrien Couet ◽  
Kumar Sridharan ◽  
...  

Author(s):  
Mahendera Kumar Meena ◽  
Durgesh Kumar ◽  
Kamlesh Kumari ◽  
Nagendra Kumar Kaushik ◽  
Rammapa Venkatesh Kumar ◽  
...  

2020 ◽  
Vol 2 (7) ◽  
pp. 2648-2667
Author(s):  
Fabian Ducry ◽  
Jan Aeschlimann ◽  
Mathieu Luisier

We review here how molecular dynamics and quantum transport can be combined to shed light on the performance of, for example, conductive bridging random access memories, and we show that electro-thermal effects play a critical role.


Sign in / Sign up

Export Citation Format

Share Document