scholarly journals Photon-emission statistics induced by electron tunneling in plasmonic nanojunctions

2021 ◽  
Vol 104 (24) ◽  
Author(s):  
R. Avriller ◽  
Q. Schaeverbeke ◽  
T. Frederiksen ◽  
F. Pistolesi
2020 ◽  
Vol 117 (12) ◽  
pp. 6362-6369 ◽  
Author(s):  
Jiaren Yuan ◽  
Yuanping Chen ◽  
Yuee Xie ◽  
Xiaoyu Zhang ◽  
Dewei Rao ◽  
...  

Shrinking the size of a bulk metal into nanoscale leads to the discreteness of electronic energy levels, the so-called Kubo gap δ. Renormalization of the electronic properties with a tunable and size-dependent δ renders fascinating photon emission and electron tunneling. In contrast with usual three-dimensional (3D) metal clusters, here we demonstrate that Kubo gap δ can be achieved with a two-dimensional (2D) metallic transition metal dichalcogenide (i.e., 1T′-phase MoTe2) nanocluster embedded in a semiconducting polymorph (i.e., 1H-phase MoTe2). Such a 1T′/1H MoTe2nanodomain resembles a 3D metallic droplet squeezed in a 2D space which shows a strong polarization catastrophe while simultaneously maintaining its bond integrity, which is absent in traditional δ-gapped 3D clusters. The weak screening of the host 2D MoTe2leads to photon emission of such pseudometallic systems and a ballistic injection of carriers in the 1T′/1H/1T′ homojunctions which may find applications in sensors and 2D reconfigurable devices.


1992 ◽  
Vol 274 (2) ◽  
pp. 199-204 ◽  
Author(s):  
N. Venkateswaran ◽  
K. Sattler ◽  
J. Xhie ◽  
M. Ge

2020 ◽  
Vol 6 (38) ◽  
pp. eabb5988 ◽  
Author(s):  
Bruno Schuler ◽  
Katherine A. Cochrane ◽  
Christoph Kastl ◽  
Edward S. Barnard ◽  
Edward Wong ◽  
...  

Quantum dot–like single-photon sources in transition metal dichalcogenides (TMDs) exhibit appealing quantum optical properties but lack a well-defined atomic structure and are subject to large spectral variability. Here, we demonstrate electrically stimulated photon emission from individual atomic defects in monolayer WS2 and directly correlate the emission with the local atomic and electronic structure. Radiative transitions are locally excited by sequential inelastic electron tunneling from a metallic tip into selected discrete defect states in the WS2 bandgap. Coupling to the optical far field is mediated by tip plasmons, which transduce the excess energy into a single photon. The applied tip-sample voltage determines the transition energy. Atomically resolved emission maps of individual point defects closely resemble electronic defect orbitals, the final states of the optical transitions. Inelastic charge carrier injection into localized defect states of two-dimensional materials provides a powerful platform for electrically driven, broadly tunable, atomic-scale single-photon sources.


Author(s):  
J. A. Panitz

Tunneling is a ubiquitous phenomenon. Alpha particle disintegration, the Stark effect, superconductivity in thin films, field-emission, and field-ionization are examples of electron tunneling phenomena. In the scanning tunneling microscope (STM) electron tunneling is used as an imaging modality. STM images of flat surfaces show structure at the atomic level. However, STM images of large biological species deposited onto flat surfaces are disappointing. For example, unstained virus particles imaged in the STM do not resemble their TEM counterparts.It is not clear how an STM image of a biological species is formed. Most biological species are large compared to the nominal electrode separation of ∼ 1nm that is required for electron tunneling. To form an image of a biological species, the tunneling electrodes must be separated by a distance that would normally be too large for a tunneling current to be observed.


Author(s):  
Patrick P. Camus

The theory of field ion emission is the study of electron tunneling probability enhanced by the application of a high electric field. At subnanometer distances and kilovolt potentials, the probability of tunneling of electrons increases markedly. Field ionization of gas atoms produce atomic resolution images of the surface of the specimen, while field evaporation of surface atoms sections the specimen. Details of emission theory may be found in monographs.Field ionization (FI) is the phenomena whereby an electric field assists in the ionization of gas atoms via tunneling. The tunneling probability is a maximum at a critical distance above the surface,xc, Fig. 1. Energy is required to ionize the gas atom at xc, I, but at a value reduced by the appliedelectric field, xcFe, while energy is recovered by placing the electron in the specimen, φ. The highest ionization probability occurs for those regions on the specimen that have the highest local electric field. Those atoms which protrude from the average surfacehave the smallest radius of curvature, the highest field and therefore produce the highest ionizationprobability and brightest spots on the imaging screen, Fig. 2. This technique is called field ion microscopy (FIM).


Sign in / Sign up

Export Citation Format

Share Document