Room-temperature growth of two-dimensional gold films on GaAs(001)

1987 ◽  
Vol 36 (11) ◽  
pp. 6231-6234 ◽  
Author(s):  
T. G. Andersson ◽  
G. Le Lay ◽  
J. Kanski ◽  
S. P. Svensson
Author(s):  
D.N. Dunn ◽  
P. Xu ◽  
L.D. Marks

The growth of noble metals such as Au and Ag on Si and Ge is of considerable interest for modern semi-conductor device applications. Several groups have investigated the room temperature growth of Au films on Ge (111) substrates using RHEED, LEED, UPS, as well as other techniques. It is clear from these investigations that the growth of Au on Ge (111) proceeds by a mechanism contrary to what might be expected by comparison to the growth of Au on Si (111). In general most of these studies have looked in two regimes, the first being simple room temperature growth over a wide range of Au coverages from a few tenths of a monolayer up to 100 Å in thickness. The second regime is the behavior of these Au films as a function of annealing temperature. Using RHEED and LEED to study a wide range of Au coverages, Le Lay and coworkers have found that the growth mechanism of Au films proceeds by the appearance of two dimensional close packed domains which do not completely cover the surface.


Nanophotonics ◽  
2020 ◽  
Vol 9 (14) ◽  
pp. 4233-4252
Author(s):  
Yael Gutiérrez ◽  
Pablo García-Fernández ◽  
Javier Junquera ◽  
April S. Brown ◽  
Fernando Moreno ◽  
...  

AbstractReconfigurable plasmonics is driving an extensive quest for active materials that can support a controllable modulation of their optical properties for dynamically tunable plasmonic structures. Here, polymorphic gallium (Ga) is demonstrated to be a very promising candidate for adaptive plasmonics and reconfigurable photonics applications. The Ga sp-metal is widely known as a liquid metal at room temperature. In addition to the many other compelling attributes of nanostructured Ga, including minimal oxidation and biocompatibility, its six phases have varying degrees of metallic character, providing a wide gamut of electrical conductivity and optical behavior tunability. Here, the dielectric function of the several Ga phases is introduced and correlated with their respective electronic structures. The key conditions for optimal optical modulation and switching for each Ga phase are evaluated. Additionally, we provide a comparison of Ga with other more common phase-change materials, showing better performance of Ga at optical frequencies. Furthermore, we first report, to the best of our knowledge, the optical properties of liquid Ga in the terahertz (THz) range showing its broad plasmonic tunability from ultraviolet to visible-infrared and down to the THz regime. Finally, we provide both computational and experimental evidence of extension of Ga polymorphism to bidimensional two-dimensional (2D) gallenene, paving the way to new bidimensional reconfigurable plasmonic platforms.


Author(s):  
Haohao Sheng ◽  
Haoxiang Long ◽  
Guanzhen Zou ◽  
Dongmei Bai ◽  
Junting Zhang ◽  
...  

2021 ◽  
Vol 126 (22) ◽  
Author(s):  
Bo Han ◽  
Ruixue Zhu ◽  
Xiaomei Li ◽  
Mei Wu ◽  
Ryo Ishikawa ◽  
...  

2021 ◽  
Author(s):  
Yuanyuan Cao ◽  
Sha Zhu ◽  
Julien Bachmann

The two-dimensional material and semiconducting dichalcogenide hafnium disulfide is deposited at room temperature by atomic layer deposition from molecular precursors dissolved in hexane.


2016 ◽  
Vol 72 (6) ◽  
pp. 480-484 ◽  
Author(s):  
Qiu-Ying Huang ◽  
Xiao-Yi Lin ◽  
Xiang-Ru Meng

The N-heterocyclic ligand 2-[(1H-imidazol-1-yl)methyl]-1H-benzimidazole (imb) has a rich variety of coordination modes and can lead to polymers with intriguing structures and interesting properties. In the coordination polymercatena-poly[[cadmium(II)-bis[μ-benzene-1,2-dicarboxylato-κ4O1,O1′:O2,O2′]-cadmium(II)-bis{μ-2-[(1H-imidazol-1-yl)methyl]-1H-benzimidazole}-κ2N2:N3;κ2N3:N2] dimethylformamide disolvate], {[Cd(C8H4O4)(C11H10N4)]·C3H7NO}n, (I), each CdIIion exhibits an irregular octahedral CdO4N2coordination geometry and is coordinated by four O atoms from two symmetry-related benzene-1,2-dicarboxylate (1,2-bdic2−) ligands and two N atoms from two symmetry-related imb ligands. Two CdIIions are connected by two benzene-1,2-dicarboxylate ligands to generate a binuclear [Cd2(1,2-bdic)2] unit. The binuclear units are further connected into a one-dimensional chain by pairs of bridging imb ligands. These one-dimensional chains are further connected through N—H...O hydrogen bonds and π–π interactions, leading to a two-dimensional layered structure. The dimethylformamide solvent molecules are organized in dimeric pairsviaweak interactions. In addition, the title polymer exhibits good fluorescence properties in the solid state at room temperature.


2020 ◽  
Vol 101 (21) ◽  
Author(s):  
Luo-Zhao Zhang ◽  
An-Lei Zhang ◽  
Xiu-De He ◽  
Xin-Wei Ben ◽  
Qi-Ling Xiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document