Random and exchange anisotropy in consolidated nanostructured Fe and Ni: Role of grain size and trace oxides on the magnetic properties

1998 ◽  
Vol 57 (5) ◽  
pp. 2915-2924 ◽  
Author(s):  
Jörg F. Löffler ◽  
Jürg P. Meier ◽  
Bernard Doudin ◽  
Jean-Philippe Ansermet ◽  
Werner Wagner
2013 ◽  
Vol 328 ◽  
pp. 86-90 ◽  
Author(s):  
P.A. Yadav ◽  
A.V. Deshmukh ◽  
K.P. Adhi ◽  
B.B. Kale ◽  
N. Basavaih ◽  
...  

2020 ◽  
Vol 38 (10) ◽  
pp. 1069-1075 ◽  
Author(s):  
Anil B. Mugutkar ◽  
Shyam K. Gore ◽  
Umakant B. Tumberphale ◽  
Vijaykumar V. Jadhav ◽  
Rajaram S. Mane ◽  
...  

2001 ◽  
Vol 674 ◽  
Author(s):  
Diandra L. Leslie-Pelecky ◽  
Elaine M. Kirkpatrick ◽  
Tom Pekarek ◽  
Richard L. Schalek ◽  
Paul Shand ◽  
...  

ABSTRACTMechanical milling provides a unique means of studying the influence of grain size and disorder on the magnetic properties of nanostructured alloys. This paper compares the role of milling in the nanostructure evolution of two ferromagnets – SmCo5 and GdAl2 – and the subsequent impact of nanostructure on magnetic properties and phase transitions. The ferromagnetic properties of SmCo5 are enhanced by short (< 2 hours) milling times, producing up to an eight-fold increase in coercivity and high remanence ratios. The coercivity increase is attributed to defect formation and strain. Additional milling increases the disorder and produces a mix of ferromagnetic and antiferromagnetic interactions that form a magnetically glassy phase. GdAl2, which changes from ferromagnetic in its crystalline form to spin-glass-like in its amorphous form, is a model system for studying the dependence of magnetically glassy behavior on grain size and disorder. Nanostructured GdAl2 with a mean grain size of 8 nm shows a combination of ferromagnetic and magnetically glassy behavior, in contrast to previous studies of nanostructured GdAl2 with a grain size of 20 nm that show only spin-glass-like behavior.


2017 ◽  
Vol 13 (1) ◽  
pp. 4486-4494 ◽  
Author(s):  
G.El Damrawi ◽  
F. Gharghar

Cerium oxide in borate glasses of composition xCeO2·(50 − x)PbO·50B2O3 plays an important role in changing both microstructure and magnetic behaviors of the system. The structural role of CeO2 as an effective agent for cluster and crystal formation in borate network is clearly evidenced by XRD technique. Both structure and size of well-formed cerium separated clusters have an effective influence on the structural properties. The cluster aggregations are documented to be found in different range ordered structures, intermediate and long range orders are the most structures in which cerium phases are involved. The nano-sized crystallized cerium species in lead borate phase are evidenced to have magnetic behavior.  The criteria of building new specific borate phase enriched with cerium as ferrimagnetism has been found to keep the magnetization in large scale even at extremely high temperature. Treating the glass thermally or exposing it to an effective dose of ionized radiation is evidenced to have an essential change in magnetic properties. Thermal heat treatment for some of investigated materials is observed to play dual roles in the glass matrix. It can not only enhance alignment processes of the magnetic moment but also increases the capacity of the crystallite species in the magnetic phases. On the other hand, reverse processes are remarked under the effect of irradiation. The magnetization was found to be lowered, since several types of the trap centers which are regarded as defective states can be produced by effect of ionized radiation. 


2021 ◽  
Vol 260 ◽  
pp. 124178
Author(s):  
Pavel Veverka ◽  
Lenka Kubíčková ◽  
Zdeněk Jirák ◽  
Vít Herynek ◽  
Miroslav Veverka ◽  
...  

Author(s):  
Hasitha Ganegoda ◽  
Soham Mukherjee ◽  
Beihai Ma ◽  
Daniel T. Olive ◽  
James H. McNeely ◽  
...  

2021 ◽  
Author(s):  
Jyoti Saini ◽  
Monika Sharma ◽  
Bijoy Kumar Kuanr

Functional magnetic oxide particles offer exceptional GHz frequency capabilities, which can significantly enhance the utility of communication and signal processing devices.


Wear ◽  
2021 ◽  
pp. 203678
Author(s):  
Vahid Javaheri ◽  
Oskari Haiko ◽  
Saeed Sadeghpour ◽  
Kati Valtonen ◽  
Jukka Kömi ◽  
...  

The Holocene ◽  
2019 ◽  
Vol 30 (3) ◽  
pp. 479-484
Author(s):  
Daniel P Maxbauer ◽  
Mark D Shapley ◽  
Christoph E Geiss ◽  
Emi Ito

We present two hypotheses regarding the evolution of Holocene climate in the Northern Rocky Mountains that stem from a previously unpublished environmental magnetic record from Jones Lake, Montana. First, we link two distinct intervals of fining magnetic grain size (documented by an increasing ratio of anhysteretic to isothermal remanent magnetization) to the authigenic production of magnetic minerals in Jones Lake bottom waters. We propose that authigenesis in Jones Lake is limited by rates of groundwater recharge and ultimately regional hydroclimate. Second, at ~8.3 ka, magnetic grain size increases sharply, accompanied by a drop in concentration of magnetic minerals, suggesting a rapid termination of magnetic mineral authigenesis that is coeval with widespread effects of the 8.2 ka event in the North Atlantic. This association suggests a hydroclimatic response to the 8.2 ka event in the Northern Rockies that to our knowledge is not well documented. These preliminary hypotheses present compelling new ideas that we hope will both highlight the sensitivity of magnetic properties to record climate variability and attract more work by future research into aridity, hydrochemical response, and climate dynamics in the Northern Rockies.


Sign in / Sign up

Export Citation Format

Share Document