scholarly journals Exact solution of the strong couplingt−Vmodel with twisted boundary conditions

2000 ◽  
Vol 62 (12) ◽  
pp. 7791-7801 ◽  
Author(s):  
R. G. Dias
2021 ◽  
pp. 108128652199641
Author(s):  
Mikhail D Kovalenko ◽  
Irina V Menshova ◽  
Alexander P Kerzhaev ◽  
Guangming Yu

We construct exact solutions of two inhomogeneous boundary value problems in the theory of elasticity for a half-strip with free long sides in the form of series in Papkovich–Fadle eigenfunctions: (a) the half-strip end is free and (b) the half-strip end is firmly clamped. Initially, we construct a solution of the inhomogeneous problem for an infinite strip. Subsequently, the corresponding solutions for a half-strip are added to this solution, whereby the boundary conditions at the end are satisfied. The Papkovich orthogonality relation is used to solve the inhomogeneous problem in a strip.


2018 ◽  
Vol 48 (5) ◽  
pp. 451-466
Author(s):  
Krissia Zawadzki ◽  
Irene D’Amico ◽  
Luiz N. Oliveira

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Abdelhalim Ebaid ◽  
Hibah S. Alhawiti

The boundary layer flow of nanofluids is usually described by a system of nonlinear differential equations with infinity boundary conditions. These boundary conditions at infinity are transformed into classical boundary conditions via two different transformations. Accordingly, the original heat transfer equation is changed into a new one which is expressed in terms of the new variable. The exact solutions have been obtained in terms of the exponential function for the stream function and in terms of the incomplete Gamma function for the temperature distribution. Furthermore, it is found in this project that a certain transformation reduces the computational work required to obtain the exact solution of the heat transfer equation. Hence, such transformation is recommended for future analysis of similar physical problems. Besides, the other published exact solution was expressed in terms of the WhittakerM function which is more complicated than the generalized incomplete Gamma function of the current analysis. It is important to refer to the fact that the analytical procedure followed in our project is easier and more direct than the one considered in a previous published work.


1951 ◽  
Vol 18 (2) ◽  
pp. 163-172
Author(s):  
H. D. Conway ◽  
L. Chow ◽  
G. W. Morgan

Abstract This paper presents a method of analyzing the stress distribution in a deep beam of finite length by superimposing two stress functions. The first stress function is chosen in the form of a trigonometric series which satisfies all but one of the boundary conditions—that of zero normal stress on the ends of the beam. The principle of least work is then used to obtain a second stress function giving the distribution of normal stress on the ends which is left by the first stress function. By superimposing the two solutions, all the boundary conditions are satisfied. Two particular cases of a given type of loading are solved in this way to investigate the stresses in a deep beam and their deviation from the ordinary beam theory. In addition, an approximate solution by the numerical method of finite difference is worked out for one of the two cases. Results from the two methods are compared and discussed. A method of obtaining an exact solution to the problem is given in an Appendix.


2019 ◽  
Vol 34 (09) ◽  
pp. 1950052
Author(s):  
Natalia V. Kolomoyets ◽  
Vladimir V. Skalozub

The color structure of the gluon field magnetic mass is investigated in the lattice SU(2) gluodynamics. To realize that the interaction between a monopole–antimonopole string and external neutral Abelian chromomagnetic field flux is considered. The string is introduced in the way proposed by Srednicki and Susskind. The neutral Abelian field flux is introduced through the twisted boundary conditions. Monte Carlo simulations are performed on 4D lattices at finite temperature. It is shown that the presence of the Abelian field flux weakens the screening of the string field. That means decreasing the gluon magnetic mass for this environment. The contribution of the neutral Abelian field has the form of “enhancing” factor in the fitting functions. This behavior independently confirms the long-range nature of the neutral Abelian field reported already in the literature. The comparison with analytic calculations is given.


1988 ◽  
Vol 203 (1-2) ◽  
pp. 74-78 ◽  
Author(s):  
Chao-shang Huang ◽  
Wei-dong Zhao ◽  
Zhi-yong Zhao

Sign in / Sign up

Export Citation Format

Share Document