scholarly journals Low-temperature hopping and absence of spin-dependent transport in single crystals of cobalt-doped ZnO

2010 ◽  
Vol 82 (12) ◽  
Author(s):  
N. Sharma ◽  
S. Granville ◽  
S. C. Kashyap ◽  
J.-Ph. Ansermet
2004 ◽  
Vol 46 (11) ◽  
pp. 2067-2072 ◽  
Author(s):  
S. S. Aplesnin ◽  
L. I. Ryabinkina ◽  
G. M. Abramova ◽  
O. B. Romanova ◽  
N. I. Kiselev ◽  
...  

1980 ◽  
Vol 41 (C5) ◽  
pp. C5-155-C5-156 ◽  
Author(s):  
T. G. Aminov ◽  
K. P. Below ◽  
V. T. Kalinnikov ◽  
L. I. Koroleva ◽  
L. N. Tovmasjan

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yun Li ◽  
Xiaobo Li ◽  
Shidong Zhang ◽  
Liemao Cao ◽  
Fangping Ouyang ◽  
...  

AbstractStrain engineering has become one of the effective methods to tune the electronic structures of materials, which can be introduced into the molecular junction to induce some unique physical effects. The various γ-graphyne nanoribbons (γ-GYNRs) embedded between gold (Au) electrodes with strain controlling have been designed, involving the calculation of the spin-dependent transport properties by employing the density functional theory. Our calculated results exhibit that the presence of strain has a great effect on transport properties of molecular junctions, which can obviously enhance the coupling between the γ-GYNR and Au electrodes. We find that the current flowing through the strained nanojunction is larger than that of the unstrained one. What is more, the length and strained shape of the γ-GYNR serves as the important factors which affect the transport properties of molecular junctions. Simultaneously, the phenomenon of spin-splitting occurs after introducing strain into nanojunction, implying that strain engineering may be a new means to regulate the electron spin. Our work can provide theoretical basis for designing of high performance graphyne-based devices in the future.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yipeng An ◽  
Kun Wang ◽  
Shijing Gong ◽  
Yusheng Hou ◽  
Chunlan Ma ◽  
...  

AbstractTwo-dimensional (2D) magnetic materials are essential for the development of the next-generation spintronic technologies. Recently, layered van der Waals (vdW) compound MnBi2Te4 (MBT) has attracted great interest, and its 2D structure has been reported to host coexisting magnetism and topology. Here, we design several conceptual nanodevices based on MBT monolayer (MBT-ML) and reveal their spin-dependent transport properties by means of the first-principles calculations. The pn-junction diodes and sub-3-nm pin-junction field-effect transistors (FETs) show a strong rectifying effect and a spin filtering effect, with an ideality factor n close to 1 even at a reasonably high temperature. In addition, the pip- and nin-junction FETs give an interesting negative differential resistive (NDR) effect. The gate voltages can tune currents through these FETs in a large range. Furthermore, the MBT-ML has a strong response to light. Our results uncover the multifunctional nature of MBT-ML, pave the road for its applications in diverse next-generation semiconductor spin electric devices.


Sign in / Sign up

Export Citation Format

Share Document