scholarly journals Ferromagnetism in the one-dimensional Kondo lattice: Mean-field approach via Majorana fermion canonical transformation

2014 ◽  
Vol 89 (3) ◽  
Author(s):  
Matteo Bazzanella ◽  
Johan Nilsson
2003 ◽  
Vol 03 (04) ◽  
pp. L389-L398 ◽  
Author(s):  
ZORAN MIHAILOVIĆ ◽  
MILAN RAJKOVIĆ

A discrete-time Markov chain solution with exact rules for general computation of transition probabilities of the one-dimensional cooperative Parrondo's games is presented. We show that winning and the occurrence of the paradox depends on the number of players. Analytical results are compared to the results of the computer simulation and to the results based on the mean-field approach.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Igor N. Karnaukhov

AbstractUsing mean field approach, we provide analytical and numerical solution of the symmetric Anderson lattice for arbitrary dimension at half filling. The symmetric Anderson lattice is equivalent to the Kondo lattice, which makes it possible to study the behavior of an electron liquid in the Kondo lattice. We have shown that, due to hybridization (through an effective field due to localized electrons) of electrons with different spins and momenta $$\mathbf{k} $$ k and $$\mathbf{k} +\overrightarrow{\pi }$$ k + π → , the gap in the electron spectrum opens at half filling. Such hybridization breaks the conservation of the total magnetic momentum of electrons, the spontaneous symmetry is broken. The state of electron liquid is characterized by a large Fermi surface. A gap in the spectrum is calculated depending on the magnitude of the on-site Coulomb repulsion and value of s–d hybridization for the chain, as well as for square and cubic lattices. Anomalous behavior of the heat capacity at low temperatures in the gapped state, which is realized in the symmetric Anderson lattice, was also found.


2003 ◽  
Vol 14 (03) ◽  
pp. 257-265 ◽  
Author(s):  
MARCELO A. MONTEMURRO ◽  
FRANCISCO A. TAMARIT

In this work we study, by means of numerical simulations, the out-of-equilibrium dynamics of the one-dimensional Edwards–Anderson model with long-range interactions of the form ± Jr-α. In the limit α → 0 we recover the well known Sherrington–Kirkpatrick mean-field version of the model, which presents a very complex dynamical behavior. At the other extreme, for α → ∞ the model converges to the nearest-neighbor one-dimensional system. We focus our study on the dependence of the dynamics on the history of the sample (aging phenomena) for different values of α. The model is known to have mean-field exponents already for values of α = 2/3. Our results indicate that the crossover to the dynamic mean-field occurs at a value of α < 2/3.


2009 ◽  
Vol 102 (2) ◽  
Author(s):  
Amy C. Cassidy ◽  
Douglas Mason ◽  
Vanja Dunjko ◽  
Maxim Olshanii

Sign in / Sign up

Export Citation Format

Share Document