scholarly journals Resonant driving of magnetization precession in a ferromagnetic layer by coherent monochromatic phonons

2015 ◽  
Vol 92 (2) ◽  
Author(s):  
J. V. Jäger ◽  
A. V. Scherbakov ◽  
B. A. Glavin ◽  
A. S. Salasyuk ◽  
R. P. Campion ◽  
...  
Author(s):  
Soumyarup Hait ◽  
Sajid Husain ◽  
Nanhe Kumar Gupta ◽  
Nilamani Behera ◽  
Ankit Kumar ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yan Li ◽  
Yang Li ◽  
Peng Li ◽  
Bin Fang ◽  
Xu Yang ◽  
...  

AbstractNonmagnetic Rashba systems with broken inversion symmetry are expected to exhibit nonreciprocal charge transport, a new paradigm of unidirectional magnetoresistance in the absence of ferromagnetic layer. So far, most work on nonreciprocal transport has been solely limited to cryogenic temperatures, which is a major obstacle for exploiting the room-temperature two-terminal devices based on such a nonreciprocal response. Here, we report a nonreciprocal charge transport behavior up to room temperature in semiconductor α-GeTe with coexisting the surface and bulk Rashba states. The combination of the band structure measurements and theoretical calculations strongly suggest that the nonreciprocal response is ascribed to the giant bulk Rashba spin splitting rather than the surface Rashba states. Remarkably, we find that the magnitude of the nonreciprocal response shows an unexpected non-monotonical dependence on temperature. The extended theoretical model based on the second-order spin–orbit coupled magnetotransport enables us to establish the correlation between the nonlinear magnetoresistance and the spin textures in the Rashba system. Our findings offer significant fundamental insight into the physics underlying the nonreciprocity and may pave a route for future rectification devices.


2011 ◽  
Vol 266 ◽  
pp. 012101
Author(s):  
T Nonaka ◽  
K Ando ◽  
T Yoshino ◽  
E Saitoh

1986 ◽  
Vol 54-57 ◽  
pp. 1689-1690 ◽  
Author(s):  
M.L. Cofield ◽  
C.F. Brucker ◽  
J.S. Gau ◽  
J.T. Gerard

2020 ◽  
Vol 11 ◽  
pp. 1254-1263
Author(s):  
Yury Khaydukov ◽  
Sabine Pütter ◽  
Laura Guasco ◽  
Roman Morari ◽  
Gideok Kim ◽  
...  

We have investigated the structural, magnetic and superconduction properties of [Nb(1.5 nm)/Fe(x)]10 superlattices deposited on a thick Nb(50 nm) layer. Our investigation showed that the Nb(50 nm) layer grows epitaxially at 800 °C on the Al2O3(1−102) substrate. Samples grown at this condition possess a high residual resistivity ratio of 15–20. By using neutron reflectometry we show that Fe/Nb superlattices with x < 4 nm form a depth-modulated FeNb alloy with concentration of iron varying between 60% and 90%. This alloy has weak ferromagnetic properties. The proximity of this weak ferromagnetic layer to a thick superconductor leads to an intermediate phase that is characterized by a suppressed but still finite resistance of structure in a temperature interval of about 1 K below the superconducting transition of thick Nb. By increasing the thickness of the Fe layer to x = 4 nm the intermediate phase disappears. We attribute the intermediate state to proximity induced non-homogeneous superconductivity in the structure.


2021 ◽  
Vol 63 (9) ◽  
pp. 1321
Author(s):  
Т.А. Шайхулов ◽  
К.Л. Станкевич ◽  
К.И. Константинян ◽  
В.В. Демидов ◽  
Г.А. Овсянников

The temperature dependence of the voltage induced by the spin current was studied in an epitaxial thin-film La0.7Sr0.3MnO3 / SrIrO3 heterostructure deposited on a single-crystal NdGaO3 substrate. The spin current was generated by microwave pumping under conditions of ferromagnetic resonance in the La0.7Sr0.3MnO3 ferromagnetic layer and was detected in the SrIrO3 layer due to inverse spin Hall effect. A significant increase of half-width of the spin current spectrum along with the rise of amplitude of the spin current upon cooling from room temperature (300 K) to 135 K were observed.


Sign in / Sign up

Export Citation Format

Share Document