scholarly journals New physics and the black hole mass gap

2020 ◽  
Vol 102 (11) ◽  
Author(s):  
Djuna Croon ◽  
Samuel D. McDermott ◽  
Jeremy Sakstein
2020 ◽  
Vol 493 (3) ◽  
pp. 4333-4341 ◽  
Author(s):  
M Renzo ◽  
R J Farmer ◽  
S Justham ◽  
S E de Mink ◽  
Y Götberg ◽  
...  

ABSTRACT Gravitational-wave detections are now probing the black hole (BH) mass distribution, including the predicted pair-instability mass gap. These data require robust quantitative predictions, which are challenging to obtain. The most massive BH progenitors experience episodic mass ejections on time-scales shorter than the convective turnover time-scale. This invalidates the steady-state assumption on which the classic mixing length theory relies. We compare the final BH masses computed with two different versions of the stellar evolutionary code $\tt{MESA}$: (i) using the default implementation of Paxton et al. (2018) and (ii) solving an additional equation accounting for the time-scale for convective deceleration. In the second grid, where stronger convection develops during the pulses and carries part of the energy, we find weaker pulses. This leads to lower amounts of mass being ejected and thus higher final BH masses of up to ∼$5\, \mathrm{M}_\odot$. The differences are much smaller for the progenitors that determine the maximum mass of BHs below the gap. This prediction is robust at $M_{\rm BH, max}\simeq 48\, \mathrm{M}_\odot$, at least within the idealized context of this study. This is an encouraging indication that current models are robust enough for comparison with the present-day gravitational-wave detections. However, the large differences between individual models emphasize the importance of improving the treatment of convection in stellar models, especially in the light of the data anticipated from the third generation of gravitational-wave detectors.


2019 ◽  
Vol 887 (1) ◽  
pp. 53 ◽  
Author(s):  
R. Farmer ◽  
M. Renzo ◽  
S. E. de Mink ◽  
P. Marchant ◽  
S. Justham

2020 ◽  
Vol 903 (1) ◽  
pp. 45 ◽  
Author(s):  
Kyle Kremer ◽  
Mario Spera ◽  
Devin Becker ◽  
Sourav Chatterjee ◽  
Ugo N. Di Carlo ◽  
...  

Science ◽  
2020 ◽  
Vol 369 (6511) ◽  
pp. 1580.6-1581
Author(s):  
Keith T. Smith
Keyword(s):  

2020 ◽  
Vol 102 (12) ◽  
Author(s):  
Maria C. Straight ◽  
Jeremy Sakstein ◽  
Eric J. Baxter

1998 ◽  
Vol 188 ◽  
pp. 388-389
Author(s):  
A. Kubota ◽  
K. Makishima ◽  
T. Dotani ◽  
H. Inoue ◽  
K. Mitsuda ◽  
...  

About 10 X-ray binaries in our Galaxy and LMC/SMC are considered to contain black hole candidates (BHCs). Among these objects, Cyg X-1 was identified as the first BHC, and it has led BHCs for more than 25 years(Oda 1977, Liang and Nolan 1984). It is a binary system composed of normal blue supergiant star and the X-ray emitting compact object. The orbital kinematics derived from optical observations indicates that the compact object is heavier than ~ 4.8 M⊙ (Herrero 1995), which well exceeds the upper limit mass for a neutron star(Kalogora 1996), where we assume the system consists of only two bodies. This has been the basis for BHC of Cyg X-1.


Author(s):  
Hajime Inoue

Abstract We investigate a mechanism for a super-massive black hole at the center of a galaxy to wander in the nucleus region. A situation is supposed in which the central black hole tends to move by the gravitational attractions from the nearby molecular clouds in a nuclear bulge but is braked via the dynamical frictions from the ambient stars there. We estimate the approximate kinetic energy of the black hole in an equilibrium between the energy gain rate through the gravitational attractions and the energy loss rate through the dynamical frictions in a nuclear bulge composed of a nuclear stellar disk and a nuclear stellar cluster as observed from our Galaxy. The wandering distance of the black hole in the gravitational potential of the nuclear bulge is evaluated to get as large as several 10 pc, when the black hole mass is relatively small. The distance, however, shrinks as the black hole mass increases, and the equilibrium solution between the energy gain and loss disappears when the black hole mass exceeds an upper limit. As a result, we can expect the following scenario for the evolution of the black hole mass: When the black hole mass is smaller than the upper limit, mass accretion of the interstellar matter in the circumnuclear region, causing the AGN activities, makes the black hole mass larger. However, when the mass gets to the upper limit, the black hole loses the balancing force against the dynamical friction and starts spiraling downward to the gravity center. From simple parameter scaling, the upper mass limit of the black hole is found to be proportional to the bulge mass, and this could explain the observed correlation of the black hole mass with the bulge mass.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Éanna É. Flanagan

Abstract As a black hole evaporates, each outgoing Hawking quantum carries away some of the black holes asymptotic charges associated with the extended Bondi-Metzner-Sachs group. These include the Poincaré charges of energy, linear momentum, intrinsic angular momentum, and orbital angular momentum or center-of-mass charge, as well as extensions of these quantities associated with supertranslations and super-Lorentz transformations, namely supermomentum, superspin and super center-of-mass charges (also known as soft hair). Since each emitted quantum has fluctuations that are of order unity, fluctuations in the black hole’s charges grow over the course of the evaporation. We estimate the scale of these fluctuations using a simple model. The results are, in Planck units: (i) The black hole position has a uncertainty of $$ \sim {M}_i^2 $$ ∼ M i 2 at late times, where Mi is the initial mass (previously found by Page). (ii) The black hole mass M has an uncertainty of order the mass M itself at the epoch when M ∼ $$ {M}_i^{2/3} $$ M i 2 / 3 , well before the Planck scale is reached. Correspondingly, the time at which the evaporation ends has an uncertainty of order $$ \sim {M}_i^2 $$ ∼ M i 2 . (iii) The supermomentum and superspin charges are not independent but are determined from the Poincaré charges and the super center-of-mass charges. (iv) The supertranslation that characterizes the super center-of-mass charges has fluctuations at multipole orders l of order unity that are of order unity in Planck units. At large l, there is a power law spectrum of fluctuations that extends up to l ∼ $$ {M}_i^2/M $$ M i 2 / M , beyond which the fluctuations fall off exponentially, with corresponding total rms shear tensor fluctuations ∼ MiM−3/2.


Sign in / Sign up

Export Citation Format

Share Document