scholarly journals Causal structure of a recent loop quantum gravity black hole collapse model

2021 ◽  
Vol 104 (4) ◽  
Author(s):  
Johannes Münch
2015 ◽  
Vol 24 (11) ◽  
pp. 1530028 ◽  
Author(s):  
Steven Carlip ◽  
Dah-Wei Chiou ◽  
Wei-Tou Ni ◽  
Richard Woodard

We present a bird's-eye survey on the development of fundamental ideas of quantum gravity, placing emphasis on perturbative approaches, string theory, loop quantum gravity (LQG) and black hole thermodynamics. The early ideas at the dawn of quantum gravity as well as the possible observations of quantum gravitational effects in the foreseeable future are also briefly discussed.


2008 ◽  
Vol 2008 ◽  
pp. 1-12 ◽  
Author(s):  
Leonardo Modesto

We calculate modifications to the Schwarzschild solution by using a semiclassical analysis of loop quantum black hole. We obtain a metric inside the event horizon that coincides with the Schwarzschild solution near the horizon but that is substantially different at the Planck scale. In particular, we obtain a bounce of theS2sphere for a minimum value of the radius and that it is possible to have another event horizon close to ther=0point.


2005 ◽  
Vol 14 (12) ◽  
pp. 2301-2305
Author(s):  
JOHN SWAIN

Black hole thermodynamics suggests that the maximum entropy that can be contained in a region of space is proportional to the area enclosing it rather than its volume. We argue that this follows naturally from loop quantum gravity and a result of Kolmogorov and Bardzin' on the the realizability of networks in three dimensions. This represents an alternative to other approaches in which some sort of correlation between field configurations helps limit the degrees of freedom within a region. It also provides an approach to thinking about black hole entropy in terms of states inside rather than on its surface. Intuitively, a spin network complicated enough to imbue a region with volume only lets that volume grow as quickly as the area bounding it.


2010 ◽  
Vol 88 (3) ◽  
pp. 223-225
Author(s):  
J. Manuel García-Islas

We show that counting different configurations that give rise to black-hole entropy in loop quantum gravity is related to partitions in number theory.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 402
Author(s):  
Daniela Pugliese ◽  
Giovanni Montani

This work participates in the research for potential areas of observational evidence of quantum effects on geometry in a black hole astrophysical context. We consider properties of a family of loop quantum corrected regular black hole (BHs) solutions and their horizons, focusing on the geometry symmetries. We study here a recently developed model, where the geometry is determined by a metric quantum modification outside the horizon. This is a regular static spherical solution of mini-super-space BH metric with Loop Quantum Gravity (LQG) corrections. The solutions are characterized delineating certain polymeric functions on the basis of the properties of the horizons and the emergence of a singularity in the limiting case of the Schwarzschild geometry. We discuss particular metric solutions on the base of the parameters of the polymeric model related to similar properties of structures, the metric Killing bundles (or metric bundles MBs), related to the BH horizons’ properties. A comparison with the Reissner–Norström geometry and the Kerr geometry with which analogies exist from the point of their respective MBs properties is done. The analysis provides a way to recognize these geometries and detect their main distinctive phenomenological evidence of LQG origin on the basis of the detection of stationary/static observers and the properties of light-like orbits within the analysis of the (conformal invariant) MBs related to the (local) causal structure. This approach could be applied in other quantum corrected BH solutions, constraining the characteristics of the underlining LQG-graph, as the minimal loop area, through the analysis of the null-like orbits and photons detection. The study of light surfaces associated with a diversified and wide range of BH phenomenology and grounding MBs definition provides a channel to search for possible astrophysical evidence. The main BHs thermodynamic characteristics are studied as luminosity, surface gravity, and temperature. Ultimately, the application of this method to this spherically symmetric approximate solution provides us with a way to clarify some formal aspects of MBs, in the presence of static, spherical symmetric spacetimes.


2007 ◽  
Vol 68 ◽  
pp. 012031 ◽  
Author(s):  
Alejandro Corichi ◽  
Jacobo Díaz-Polo ◽  
Enrique Fernández-Borja

2009 ◽  
Vol 87 (3) ◽  
pp. 255-262 ◽  
Author(s):  
A. DeBenedictis

This paper presents a brief overview on the issue of singularity resolution in loop quantum gravity presented at the Theory CANADA IV conference at the Centre de Recherches Mathématiques at the Université de Montréal. The intended audience is theoretical physicists who are non-specialist in the field, and therefore much of the technical detail is omitted here. Instead, a brief review of loop quantum gravity is presented followed by a survey of previous and current work on results concerning the resolution of the classical black hole singularity within loop quantum gravity.


Sign in / Sign up

Export Citation Format

Share Document