scholarly journals Lorentz symmetries and primary constraints in covariant teleparallel gravity

2021 ◽  
Vol 104 (12) ◽  
Author(s):  
Alexey Golovnev ◽  
María-José Guzmán
Keyword(s):  
2021 ◽  
Vol 1730 (1) ◽  
pp. 012022
Author(s):  
Kairat Myrzakulov ◽  
Duman Kenzhalin ◽  
Nurgissa Myrzakulov

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1260
Author(s):  
Zinnat Hassan ◽  
Ghulam Mustafa ◽  
Pradyumn Kumar Sahoo

This article describes the study of wormhole solutions in f(Q) gravity with noncommutative geometry. Here, we considered two different f(Q) models—a linear model f(Q)=αQ and an exponential model f(Q)=Q−α1−e−Q, where Q is the non-metricity and α is the model parameter. In addition, we discussed the existence of wormhole solutions with the help of the Gaussian and Lorentzian distributions of these linear and exponential models. We investigated the feasible solutions and graphically analyzed the different properties of these models by taking appropriate values for the parameter. Moreover, we used the Tolman–Oppenheimer–Volkov (TOV) equation to check the stability of the wormhole solutions that we obtained. Hence, we found that the wormhole solutions obtained with our models are physically capable and stable.


2021 ◽  
Vol 103 (4) ◽  
Author(s):  
E. Huguet ◽  
M. Le Delliou ◽  
M. Fontanini ◽  
Z.-C. Lin

2019 ◽  
Vol 100 (6) ◽  
Author(s):  
Sebastian Bahamonde ◽  
Konstantinos F. Dialektopoulos ◽  
Jackson Levi Said
Keyword(s):  

2019 ◽  
Vol 34 (03n04) ◽  
pp. 1950011 ◽  
Author(s):  
C. Aktaş

In this study, we obtain Einstein, Bergmann–Thomson (BT), Landau–Lifshitz (LL), Møller, Papapetrou (PP) and Tolman energy–momentum (EM) distributions for Ruban universe model in general relativity (GR) and teleparallel gravity (TG). We obtain same results for Einstein, Bergmann–Thomson and Landau–Lifshitz energy–momentum distributions in GR and TG. Also, we get same results for Einstein and Tolman energy–momentum distributions in GR. The Møller energy–momentum results are different in GR and TG. Also, using Ruban universe model, we obtain LRS Bianchi type I solutions and we get zero energy–momentum results for this universe model in GR and TG. These results of LRS Bianchi type I universe model agree with Aygün et al., Taşer et al., Doğru et al., Banerjee–Sen, Tryon and Xulu in different gravitation theories.


2021 ◽  
pp. 136612
Author(s):  
G. Mustafa ◽  
Zinnat Hassan ◽  
P.H.R.S. Moraes ◽  
P.K. Sahoo
Keyword(s):  

2017 ◽  
Vol 32 (21) ◽  
pp. 1750114 ◽  
Author(s):  
Kazuharu Bamba ◽  
Sergei D. Odintsov ◽  
Emmanuel N. Saridakis

We investigate the inflationary realization in the context of unimodular F(T) gravity, which is based on the F(T) modification of teleparallel gravity, in which one imposes the unimodular condition through the use of Lagrange multipliers. We develop the general reconstruction procedure of the F(T) form that can give rise to a given scale-factor evolution, and then we apply it in the inflationary regime. We extract the Hubble slow-roll parameters that allow us to calculate various inflation-related observables, such as the scalar spectral index and its running, the tensor-to-scalar ratio, and the tensor spectral index. Then, we examine the particular cases of de Sitter and power-law inflation, of Starobinsky inflation, as well as inflation in a specific model of unimodular F(T) gravity. As we show, in all cases the predictions of our scenarios are in a very good agreement with Planck observational data. Finally, inflation in unimodular F(T) gravity has the additional advantage that it always allows for a graceful exit for specific regions of the model parameters.


Sign in / Sign up

Export Citation Format

Share Document