scholarly journals What can WMAP tell us about the very early Universe? New physics as an explanation of the suppressed large scale power and running spectral index

2003 ◽  
Vol 68 (12) ◽  
Author(s):  
Mar Bastero-Gil ◽  
Katherine Freese ◽  
Laura Mersini-Houghton
2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Lorenzo Calibbi ◽  
Francesco D’Eramo ◽  
Sam Junius ◽  
Laura Lopez-Honorez ◽  
Alberto Mariotti

Abstract Displaced vertices at colliders, arising from the production and decay of long-lived particles, probe dark matter candidates produced via freeze-in. If one assumes a standard cosmological history, these decays happen inside the detector only if the dark matter is very light because of the relic density constraint. Here, we argue how displaced events could very well point to freeze-in within a non-standard early universe history. Focusing on the cosmology of inflationary reheating, we explore the interplay between the reheating temperature and collider signatures for minimal freeze-in scenarios. Observing displaced events at the LHC would allow to set an upper bound on the reheating temperature and, in general, to gather indirect information on the early history of the universe.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 276
Author(s):  
Muhammad Zahid Mughal ◽  
Iftikhar Ahmad ◽  
Juan Luis García Guirao

In this review article, the study of the development of relativistic cosmology and the introduction of inflation in it as an exponentially expanding early phase of the universe is carried out. We study the properties of the standard cosmological model developed in the framework of relativistic cosmology and the geometric structure of spacetime connected coherently with it. The geometric properties of space and spacetime ingrained into the standard model of cosmology are investigated in addition. The big bang model of the beginning of the universe is based on the standard model which succumbed to failure in explaining the flatness and the large-scale homogeneity of the universe as demonstrated by observational evidence. These cosmological problems were resolved by introducing a brief acceleratedly expanding phase in the very early universe known as inflation. The cosmic inflation by setting the initial conditions of the standard big bang model resolves these problems of the theory. We discuss how the inflationary paradigm solves these problems by proposing the fast expansion period in the early universe. Further inflation and dark energy in fR modified gravity are also reviewed.


1990 ◽  
Vol 43 (2) ◽  
pp. 159
Author(s):  
E Saar

Implications of the observed large scale structure on the physics of the early universe are described. A short review of Soviet work on the subject is given, and the present status of the fractal model of the large scale structure is discussed.


Science ◽  
2019 ◽  
Vol 364 (6441) ◽  
pp. eaat3100 ◽  
Author(s):  
Amr M. Shaltout ◽  
Vladimir M. Shalaev ◽  
Mark L. Brongersma

Optical metasurfaces have provided us with extraordinary ways to control light by spatially structuring materials. The space-time duality in Maxwell’s equations suggests that additional structuring of metasurfaces in the time domain can even further expand their impact on the field of optics. Advances toward this goal critically rely on the development of new materials and nanostructures that exhibit very large and fast changes in their optical properties in response to external stimuli. New physics is also emerging as ultrafast tuning of metasurfaces is becoming possible, including wavelength shifts that emulate the Doppler effect, Lorentz nonreciprocity, time-reversed optical behavior, and negative refraction. The large-scale manufacturing of dynamic flat optics has the potential to revolutionize many emerging technologies that require active wavefront shaping with lightweight, compact, and power-efficient components.


2014 ◽  
Vol 11 (S308) ◽  
pp. 546-550
Author(s):  
Alice Pisani ◽  
P. Sutter ◽  
G. Lavaux ◽  
B. Wandelt

AbstractModern surveys allow us to access to high quality large scale structure measurements. In this framework, cosmic voids appear as a new potential probe of Cosmology. We discuss the use of cosmic voids as standard spheres and their capacity to constrain new physics, dark energy and cosmological models. We introduce the Alcock-Paczyński test and its use with voids. We discuss the main difficulties in treating with cosmic voids: redshift-space distortions, the sparsity of data, and peculiar velocities. We present a method to reconstruct the spherical density profiles of void stacks in real space, without redshift-space distortions. We show its application to a toy model and a dark matter simulation; as well as a first application to reconstruct real cosmic void stacks density profiles in real space from the Sloan Digital Sky Survey.


2020 ◽  
Vol 634 ◽  
pp. A108 ◽  
Author(s):  
Sarrvesh S. Sridhar ◽  
Raffaella Morganti ◽  
Kristina Nyland ◽  
Bradley S. Frank ◽  
Jeremy Harwood ◽  
...  

Low-power radio sources dominate the radio sky. They tend to be small in size and dominated by their cores, but the origin of their properties and the evolution of their radio plasma are not well constrained. Interestingly, there is mounting evidence that low-power radio sources can significantly affect their surrounding gaseous medium and may therefore be more relevant for galaxy evolution than previously thought. In this paper, we present low radio frequency observations obtained with LOFAR at 147 MHz of the radio source hosted by NGC 3998. This is a rare example of a low-power source that is extremely dominated by its core, but that has two large-scale lobes of low surface brightness. We combine the new 147 MHz image with available 1400 MHz data to derive the spectral index over the source. Despite the low surface brightness, reminiscent of remnant structures, the lobes show an optically thin synchrotron spectral index (∼0.6). We interpret this as being due to rapid decollimation of the jets close to the core, to high turbulence of the plasma flow, and to entrainment of thermal gas. This could be the result of intermittent activity of the central active galactic nucleus, or, more likely, temporary disruption of the jet due to the interaction of the jet with the rich circumnuclear interstellar matter. Both would result in sputtering energy injection from the core, which would keep the lobes fed, albeit at a low rate. We discuss these results in connection with the properties of low-power radio sources in general. Our findings show that amorphous low surface brightness lobes should not be interpreted by default as remnant structures. Large deep surveys (in particular the LOFAR 150 MHz LoTSS and the recently started 1400 MHz Apertif survey) will identify a growing number of objects similar to NGC 3998 where these ideas can be further tested.


1988 ◽  
Vol 130 ◽  
pp. 553-553
Author(s):  
Y.-Z. Liu ◽  
Z.-G. Deng

We have suggested a scenario of fractal turbulence which might explain the origin of galaxies and the observed large scale structure of the universe (Liu and Deng, 1987). Under the condition of the early universe, the cosmic fluid can be regarded as incompressible. If we assume that the density perturbations in the early universe are adiabatic and have the scale-free Zeldovich spectrum, we may obtain the spectrum of the velocity perturbations. Perturbations with scales less than horizon will undergo dissipative process by Thomson scattering. So, the cosmic fluid can be considered as a viscous fluid (Peebles, 1971). We can find the largest and smallest scale of the perturbations in the cosmic fluid by taking account of the Reynold's number on given scale and the scale of horizon. Using the present values of Hubble constant and the mean density of matter, we have found that on the scale of horizon the Reynold's number is just the order of 102. This result shows that perturbations with scale a little smaller than horizon may produce Karman vortices before recombination and the vortices might form fractal turbulence due to Thomson drag.


2018 ◽  
Vol 14 (A30) ◽  
pp. 295-298
Author(s):  
Tina Kahniashvili ◽  
Axel Brandenburg ◽  
Arthur Kosowsky ◽  
Sayan Mandal ◽  
Alberto Roper Pol

AbstractBlazar observations point toward the possible presence of magnetic fields over intergalactic scales of the order of up to ∼1 Mpc, with strengths of at least ∼10−16 G. Understanding the origin of these large-scale magnetic fields is a challenge for modern astrophysics. Here we discuss the cosmological scenario, focussing on the following questions: (i) How and when was this magnetic field generated? (ii) How does it evolve during the expansion of the universe? (iii) Are the amplitude and statistical properties of this field such that they can explain the strengths and correlation lengths of observed magnetic fields? We also discuss the possibility of observing primordial turbulence through direct detection of stochastic gravitational waves in the mHz range accessible to LISA.


Sign in / Sign up

Export Citation Format

Share Document