scholarly journals Dynamics of a gravitational field within a wave front and thermodynamics of black holes

2004 ◽  
Vol 70 (12) ◽  
Author(s):  
Ewa Czuchry ◽  
Jacek Jezierski ◽  
Jerzy Kijowski
2017 ◽  
Vol 32 (15) ◽  
pp. 1750080 ◽  
Author(s):  
Emre Dil

In this study, to investigate the very nature of quantum black holes, we try to relate three independent studies: (q, p)-deformed Fermi gas model, Verlinde’s entropic gravity proposal and Strominger’s quantum black holes obeying the deformed statistics. After summarizing Strominger’s extremal quantum black holes, we represent the thermostatistics of (q, p)-fermions to reach the deformed entropy of the (q, p)-deformed Fermi gas model. Since Strominger’s proposal claims that the quantum black holes obey deformed statistics, this motivates us to describe the statistics of quantum black holes with the (q, p)-deformed fermions. We then apply the Verlinde’s entropic gravity proposal to the entropy of the (q, p)-deformed Fermi gas model which gives the two-parameter deformed Einstein equations describing the gravitational field equations of the extremal quantum black holes obeying the deformed statistics. We finally relate the obtained results with the recent study on other modification of Einstein equations obtained from entropic quantum corrections in the literature.


2008 ◽  
Vol 23 (35) ◽  
pp. 2979-2986
Author(s):  
MERAB GOGBERASHVILI

The warped solution of Einstein's equations corresponding to the spherical brane in five-dimensional AdS is considered. This metric represents interiors of black holes on both sides of the brane and can provide gravitational trapping of physical fields on the shell. It is found that the analytic form of the coordinate transformations from the Schwarzschild to co-moving frame that exists only in five dimensions. It is shown that in the static coordinates active gravitational mass of the spherical brane, in agreement with Tolman's formula, is negative, i.e. such objects are gravitationally repulsive.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Finn Larsen ◽  
Shruti Paranjape

Abstract We develop the thermodynamics of black holes in AdS4 and AdS7 near their BPS limit. In each setting we study the two distinct deformations orthogonal to the BPS surface as well as their nontrivial interplay with each other and with BPS properties. Our results illuminate recent microscopic calculations of the BPS entropy. We show that these microscopic computations can be leveraged to also describe the near BPS regime, by generalizing the boundary conditions imposed on states.


Author(s):  
Bo Gao ◽  
Xue-Mei Deng

The neutral time-like particle’s bound orbits around modified Hayward black holes have been investigated. We find that both in the marginally bound orbits (MBO) and the innermost stable circular orbits (ISCO), the test particle’s radius and its angular momentum are all more sensitive to one of the parameters [Formula: see text]. Especially, modified Hayward black holes with [Formula: see text] could mimic the same ISCO radius around the Kerr black hole with the spin parameter up to [Formula: see text]. Small [Formula: see text] could mimic the ISCO of small-spinning test particles around Schwarzschild black holes. Meanwhile, rational (periodic) orbits around modified Hayward black holes have also been studied. The epicyclic frequencies of the quasi-circular motion around modified Hayward black holes are calculated and discussed with respect to the observed Quasi-periodic oscillations (QPOs) frequencies. Our results show that rational orbits around modified Hayward black holes have different values of the energy from the ones of Schwarzschild black holes. The epicyclic frequencies in modified Hayward black holes have different frequencies from Schwarzschild and Kerr ones. These might provide hints for distinguishing modified Hayward black holes from Schwarzschild and Kerr ones by using the dynamics of time-like particles around the strong gravitational field.


Author(s):  
Timothy Clifton

By studying objects outside our Solar System, we can observe star systems with far greater gravitational fields. ‘Extrasolar tests of gravity’ considers stars of different sizes that have undergone gravitational collapse, including white dwarfs, neutron stars, and black holes. A black hole consists of a region of space-time enclosed by a surface called an event horizon. The gravitational field of a black hole is so strong that anything that finds its way inside the event horizon can never escape. Other star systems considered are binary pulsars and triple star systems. With the invention of even more powerful telescopes, there will be more tantalizing possibilities for testing gravity in the future.


2004 ◽  
Vol 19 (23) ◽  
pp. 1767-1779 ◽  
Author(s):  
LI XIANG ◽  
YOU-GEN SHEN

Some consequences of the generalized uncertainty principle (GUP) are investigated, including the deformations of the Wein's law and the state equations of black body radiation. The effects of the GUP on the thermodynamics of black holes are investigated by a heuristic method. A bound on the luminosity of the black hole radiation is obtained. The logarithmic corrections to the Bekenstein–Hawking entropy are obtained in three cases. The potential relation between the GUP and the holographic principle is also briefly discussed.


2014 ◽  
Vol 29 (29) ◽  
pp. 1450144 ◽  
Author(s):  
Yu Zhang ◽  
Jin-Ling Geng ◽  
En-Kun Li

In this paper, we study the orbital dynamics of the gravitational field of stringy black holes by analyzing the effective potential and the phase plane diagram. By solving the equation of Lagrangian, the general relativistic equations of motion in the gravitational field of stringy black holes are given. It is easy to find that the motion of test particles depends on the energy and angular momentum of the test particles. Using the phase plane analysis method and combining the conditions of the stability, we discuss different types of the test particles' orbits in the gravitational field of stringy black holes. We get the innermost stable circular orbit which occurs at r min = 5.47422 and when the angular momentum b ≤ 4.3887 the test particles will fall into the black hole.


2018 ◽  
Vol 27 (07) ◽  
pp. 1850069 ◽  
Author(s):  
Iarley P. Lobo ◽  
H. Moradpour ◽  
J. P. Morais Graça ◽  
I. G. Salako

A promising theory in modifying general relativity (GR) by violating the ordinary energy–momentum conservation law in curved spacetime is the Rastall theory of gravity. In this theory, geometry and matter fields are coupled to each other in a nonminimal way. Here, we study thermodynamic properties of some black hole (BH) solutions in this framework, and compare our results with those of GR. We demonstrate how the presence of these matter sources amplifies the effects caused by the Rastall parameter in thermodynamic quantities. Our investigation also shows that BHs with radius smaller than a certain amount ([Formula: see text]) have negative heat capacity in the Rastall framework. In fact, it is a lower bound for the possible values of horizon radius satisfied by the stable BHs.


Sign in / Sign up

Export Citation Format

Share Document