scholarly journals Weighing neutrinos using high redshift galaxy luminosity functions

2011 ◽  
Vol 83 (12) ◽  
Author(s):  
Charles Jose ◽  
Saumyadip Samui ◽  
Kandaswamy Subramanian ◽  
Raghunathan Srianand
2021 ◽  
Vol 923 (1) ◽  
pp. 8
Author(s):  
Charles L. Steinhardt ◽  
Christian Kragh Jespersen ◽  
Nora B. Linzer

Abstract One of the primary goals for the upcoming James Webb Space Telescope is to observe the first galaxies. Predictions for planned and proposed surveys have typically focused on average galaxy counts, assuming a random distribution of galaxies across the observed field. The first and most-massive galaxies, however, are expected to be tightly clustered, an effect known as cosmic variance. We show that cosmic variance is likely to be the dominant contribution to uncertainty for high-redshift mass and luminosity functions, and that median high-redshift and high-mass galaxy counts for planned observations lie significantly below average counts. Several different strategies are considered for improving our understanding of the first galaxies, including adding depth, area, and independent pointings. Adding independent pointings is shown to be the most efficient both for discovering the single highest-redshift galaxy and also for constraining mass and luminosity functions.


2020 ◽  
Vol 498 (2) ◽  
pp. 2095-2113
Author(s):  
Tommaso Ronconi ◽  
Andrea Lapi ◽  
Matteo Viel ◽  
Alberto Sartori

ABSTRACT We present a computational framework for ‘painting’ galaxies on top of the dark matter halo/sub-halo hierarchy obtained from N-body simulations. The method we use is based on the sub-halo clustering and abundance matching (SCAM) scheme which requires observations of the 1- and 2-point statistics of the target (observed) population we want to reproduce. This method is particularly tailored for high redshift studies and thereby relies on the observed high-redshift galaxy luminosity functions and correlation properties. The core functionalities are written in C++ and exploit Object Oriented Programming, with a wide use of polymorphism, to achieve flexibility and high computational efficiency. In order to have an easily accessible interface, all the libraries are wrapped in python and provided with an extensive documentation. We validate our results and provide a simple and quantitative application to reionization, with an investigation of physical quantities related to the galaxy population, ionization fraction, and bubble size distribution. The library is publicly available at https://github.com/TommasoRonconi/scampy with full documentation and examples at https://scampy.readthedocs.io.


2014 ◽  
Vol 484 ◽  
pp. 012036
Author(s):  
C Jose ◽  
S Samui ◽  
K Subramanian ◽  
R Srianand

New Astronomy ◽  
2009 ◽  
Vol 14 (7) ◽  
pp. 591-603 ◽  
Author(s):  
Saumyadip Samui ◽  
Kandaswamy Subramanian ◽  
Raghunathan Srianand

2000 ◽  
pp. 5-8
Author(s):  
M.M. Cirkovic

A kinematics of a z = 2.81 galaxy toward bright QSO 0528-250, as inferred from the absorption spectroscopy is discussed. There are sufficient arguments for a far-reaching conclusion that we are observing an older, uninvolved version of the local Galactic interstellar medium.


2006 ◽  
Vol 448 (1) ◽  
pp. 101-121 ◽  
Author(s):  
A. Gabasch ◽  
U. Hopp ◽  
G. Feulner ◽  
R. Bender ◽  
S. Seitz ◽  
...  

2021 ◽  
Vol 21 (10) ◽  
pp. 260
Author(s):  
Cheng Cheng ◽  
Jia-Sheng Huang ◽  
Hai Xu ◽  
Gao-Xiang Jin ◽  
Chuan He ◽  
...  

Abstract The Spitzer Extended Deep Survey (SEDS) as a deep and wide mid-infrared (MIR) survey project provides a sample of 500 000+ sources spreading 1.46 square degree and a depth of 26 AB mag (3σ). Combining with the previous available data, we build a PSF-matched multi-wavelength photometry catalog from u band to 8 μm. We fit the SEDS galaxies spectral energy distributions by the local galaxy templates. The results show that the SEDS galaxy can be fitted well, indicating the high redshift galaxy (z ∼ 1) shares the same templates with the local galaxies. This study would facilitate the further study of the galaxy luminosity and high redshift mass function.


2014 ◽  
Vol 789 (2) ◽  
pp. L30 ◽  
Author(s):  
Matthew D. Lehnert ◽  
Paola Di Matteo ◽  
Misha Haywood ◽  
Owain N. Snaith

2019 ◽  
Vol 625 ◽  
pp. A111 ◽  
Author(s):  
Andrew Butler ◽  
Minh Huynh ◽  
Anna Kapińska ◽  
Ivan Delvecchio ◽  
Vernesa Smolčić ◽  
...  

The evolution of the comoving kinetic luminosity densities (Ωkin) of the radio loud high-excitation radio galaxies (RL HERGs) and the low-excitation radio galaxies (LERGs) in the ultimate XMM extragalactic survey south (XXL-S) field is presented. The wide area and deep radio and optical data of XXL-S have allowed the construction of the radio luminosity functions (RLFs) of the RL HERGs and LERGs across a wide range in radio luminosity out to high redshift (z = 1.3). The LERG RLFs display weak evolution: Φ(z)∝(1 + z)0.67 ± 0.17 in the pure density evolution (PDE) case and Φ(z)∝(1 + z)0.84 ± 0.31 in the pure luminosity evolution (PLE) case. The RL HERG RLFs demonstrate stronger evolution than the LERGs: Φ(z)∝(1 + z)1.81 ± 0.15 for PDE and Φ(z)∝(1 + z)3.19 ± 0.29 for PLE. Using a scaling relation to convert the 1.4 GHz radio luminosities into kinetic luminosities, the evolution of Ωkin was calculated for the RL HERGs and LERGs and compared to the predictions from various simulations. The prediction for the evolution of radio mode feedback in the Semi-Analytic Galaxy Evolution (SAGE) model is consistent with the Ωkin evolution for all XXL-S RL AGN (all RL HERGs and LERGs), indicating that the kinetic luminosities of RL AGN may be able to balance the radiative cooling of the hot phase of the IGM. Simulations that predict the Ωkin evolution of LERG equivalent populations show similar slopes to the XXL-S LERG evolution, suggesting that observations of LERGs are well described by models of SMBHs that slowly accrete hot gas. On the other hand, models of RL HERG equivalent populations differ in their predictions. While LERGs dominate the kinetic luminosity output of RL AGN at all redshifts, the evolution of the RL HERGs in XXL-S is weaker compared to what other studies have found. This implies that radio mode feedback from RL HERGs is more prominent at lower redshifts than was previously thought.


Sign in / Sign up

Export Citation Format

Share Document