scholarly journals Models of high redshift luminosity functions and galactic outflows: The dependence on halo mass function

New Astronomy ◽  
2009 ◽  
Vol 14 (7) ◽  
pp. 591-603 ◽  
Author(s):  
Saumyadip Samui ◽  
Kandaswamy Subramanian ◽  
Raghunathan Srianand
2019 ◽  
Vol 15 (S341) ◽  
pp. 299-301
Author(s):  
Raphael Sadoun ◽  
Emilio Romano-Daz ◽  
Isaac Shlosman ◽  
Zheng Zheng

AbstractWe present results from high-resolution, zoom-in cosmological simulations to study the effect of feedback from galactic outflows on the physical and Lyα properties of high-redshift galaxies in highly overdense and normal environments at z >∼6. The Lyα properties have been obtained by post-processing the simulations with a Monte-Carlo radiative transfer (RT) code. Our results demonstrate that galactic outflows play an important role in regulating the growth of massive galaxies in overdense regions as well as the temperature and metallicity of the intergalactic medium. In particular, we find that galactic outflows are necessary to reproduce the observed Lyα luminosity functions as well as the apparent Lyα luminosity, line width and equivalent width distributions of luminous Lyα emitters at z ∼ 6.


2020 ◽  
Vol 493 (3) ◽  
pp. 4315-4332 ◽  
Author(s):  
Xiangcheng Ma ◽  
Michael Y Grudić ◽  
Eliot Quataert ◽  
Philip F Hopkins ◽  
Claude-André Faucher-Giguère ◽  
...  

ABSTRACT We report the formation of bound star clusters in a sample of high-resolution cosmological zoom-in simulations of z ≥ 5 galaxies from the Feedback In Realistic Environments project. We find that bound clusters preferentially form in high-pressure clouds with gas surface densities over $10^4\, \mathrm{ M}_{\odot }\, {\rm pc}^{-2}$, where the cloud-scale star formation efficiency is near unity and young stars born in these regions are gravitationally bound at birth. These high-pressure clouds are compressed by feedback-driven winds and/or collisions of smaller clouds/gas streams in highly gas-rich, turbulent environments. The newly formed clusters follow a power-law mass function of dN/dM ∼ M−2. The cluster formation efficiency is similar across galaxies with stellar masses of ∼107–$10^{10}\, \mathrm{ M}_{\odot }$ at z ≥ 5. The age spread of cluster stars is typically a few Myr and increases with cluster mass. The metallicity dispersion of cluster members is ∼0.08 dex in $\rm [Z/H]$ and does not depend on cluster mass significantly. Our findings support the scenario that present-day old globular clusters (GCs) were formed during relatively normal star formation in high-redshift galaxies. Simulations with a stricter/looser star formation model form a factor of a few more/fewer bound clusters per stellar mass formed, while the shape of the mass function is unchanged. Simulations with a lower local star formation efficiency form more stars in bound clusters. The simulated clusters are larger than observed GCs due to finite resolution. Our simulations are among the first cosmological simulations that form bound clusters self-consistently in a wide range of high-redshift galaxies.


2020 ◽  
Vol 500 (2) ◽  
pp. 2127-2145
Author(s):  
Christopher C Lovell ◽  
Aswin P Vijayan ◽  
Peter A Thomas ◽  
Stephen M Wilkins ◽  
David J Barnes ◽  
...  

ABSTRACT We introduce the First Light And Reionisation Epoch Simulations (FLARES), a suite of zoom simulations using the EAGLE model. We resimulate a range of overdensities during the Epoch of Reionization (EoR) in order to build composite distribution functions, as well as explore the environmental dependence of galaxy formation and evolution during this critical period of galaxy assembly. The regions are selected from a large $(3.2 \, \mathrm{cGpc})^{3}$ parent volume, based on their overdensity within a sphere of radius 14 h−1 cMpc. We then resimulate with full hydrodynamics, and employ a novel weighting scheme that allows the construction of composite distribution functions that are representative of the full parent volume. This significantly extends the dynamic range compared to smaller volume periodic simulations. We present an analysis of the galaxy stellar mass function (GSMF), the star formation rate distribution function (SFRF), and the star-forming sequence (SFS) predicted by FLARES, and compare to a number of observational and model constraints. We also analyse the environmental dependence over an unprecedented range of overdensity. Both the GSMF and the SFRF exhibit a clear double-Schechter form, up to the highest redshifts (z = 10). We also find no environmental dependence of the SFS normalization. The increased dynamic range probed by FLARES will allow us to make predictions for a number of large area surveys that will probe the EoR in coming years, carried out on new observatories such as Roman and Euclid.


2007 ◽  
Vol 671 (2) ◽  
pp. 1160-1181 ◽  
Author(s):  
Zarija Lukić ◽  
Katrin Heitmann ◽  
Salman Habib ◽  
Sergei Bashinsky ◽  
Paul M. Ricker
Keyword(s):  

2006 ◽  
Vol 448 (1) ◽  
pp. 101-121 ◽  
Author(s):  
A. Gabasch ◽  
U. Hopp ◽  
G. Feulner ◽  
R. Bender ◽  
S. Seitz ◽  
...  

2021 ◽  
Vol 21 (10) ◽  
pp. 260
Author(s):  
Cheng Cheng ◽  
Jia-Sheng Huang ◽  
Hai Xu ◽  
Gao-Xiang Jin ◽  
Chuan He ◽  
...  

Abstract The Spitzer Extended Deep Survey (SEDS) as a deep and wide mid-infrared (MIR) survey project provides a sample of 500 000+ sources spreading 1.46 square degree and a depth of 26 AB mag (3σ). Combining with the previous available data, we build a PSF-matched multi-wavelength photometry catalog from u band to 8 μm. We fit the SEDS galaxies spectral energy distributions by the local galaxy templates. The results show that the SEDS galaxy can be fitted well, indicating the high redshift galaxy (z ∼ 1) shares the same templates with the local galaxies. This study would facilitate the further study of the galaxy luminosity and high redshift mass function.


2020 ◽  
Vol 494 (2) ◽  
pp. 2355-2373 ◽  
Author(s):  
M Palla ◽  
F Calura ◽  
F Matteucci ◽  
X L Fan ◽  
F Vincenzo ◽  
...  

ABSTRACT We study the effects of the integrated galactic initial mass function (IGIMF) and dust evolution on the abundance patterns of high redshift starburst galaxies. In our chemical models, the rapid collapse of gas clouds triggers an intense and rapid star formation episode, which lasts until the onset of a galactic wind, powered by the thermal energy injected by stellar winds and supernova explosions. Our models follow the evolution of several chemical elements (C, N, α-elements, and Fe) both in the gas and dust phases. We test different values of β, the slope of the embedded cluster mass function for the IGIMF, where lower β values imply a more top-heavy initial mass function (IMF). The computed abundances are compared to high-quality abundance measurements obtained in lensed galaxies and from composite spectra in large samples of star-forming galaxies in the redshift range 2 ≲ z ≲ 3. The adoption of the IGIMF causes a sensible increase of the rate of star formation with respect to a standard Salpeter IMF, with a strong impact on chemical evolution. We find that in order to reproduce the observed abundance patterns in these galaxies, either we need a very top-heavy IGIMF (β < 2) or large amounts of dust. In particular, if dust is important, the IGIMF should have β ≥ 2, which means an IMF slightly more top-heavy than the Salpeter one. The evolution of the dust mass with time for galaxies of different mass and IMF is also computed, highlighting that the dust amount increases with a top-heavier IGIMF.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 197-198
Author(s):  
Andrew J. Bunker

AbstractI discuss stellar populations in galaxies at high redshift (z > 6), in particular the blue rest-frame UV colours which have been detected in recent years through near-IR imaging with HST. These spectral slopes of β < −2 are much more blue than star-forming galaxies at lower redshift, and may suggest less dust obscuration, lower metallicity or perhaps a different initial mass function. I describe current work on the luminosity function of high redshift star- forming galaxies, the evolution of the fraction of strong Lyman-α emitters in this population, and the contribution of the ionizing photon budget from such galaxies towards the reionization of the Universe. I also describe constraints placed by Spitzer/IRAC on stellar populations in galaxies within the first billion years, and look towards future developments in spectroscopy with Extremely Large Telescopes and the James Webb Space Telescope, including the JWST/NIRSpec GTO programme on galaxy evolution at high redshift.


2019 ◽  
Vol 15 (S352) ◽  
pp. 234-238
Author(s):  
Donatella Romano ◽  
Zhi-Yu Zhang ◽  
Francesca Matteucci ◽  
Rob J. Ivison ◽  
Padelis P. Papadopoulos

AbstractDetermining the shape of the stellar initial mass function (IMF) and whether it is constant or varies in space and time is the Holy Grail of modern astrophysics, with profound implications for all theories of star and galaxy formation. On a theoretical ground, the extreme conditions for star formation (SF) encountered in the most powerful starbursts in the Universe are expected to favour the formation of massive stars. Direct methods of IMF determination, however, cannot probe such systems, because of the severe dust obscuration affecting their starlight. The next best option is to observe CNO bearing molecules in the interstellar medium at millimetre/ submillimetre wavelengths, which, in principle, provides the best indirect evidence for IMF variations. In this contribution, we present our recent findings on this issue. First, we reassess the roles of different types of stars in the production of CNO isotopes. Then, we calibrate a proprietary chemical evolution code using Milky Way data from the literature, and extend it to discuss extragalactic data. We show that, though significant uncertainties still hamper our knowledge of the evolution of CNO isotopes in galaxies, compelling evidence for an IMF skewed towards high-mass stars can be found for galaxy-wide starbursts. In particular, we analyse a sample of submillimetre galaxies observed by us with the Atacama Large Millimetre Array at the peak of the SF activity of the Universe, for which we measure 13C/18O⋍1. This isotope ratio is especially sensitive to IMF variations, and is little affected by observational uncertainties. At the end, ongoing developments of our work are briefly outlined.


2019 ◽  
Vol 492 (2) ◽  
pp. 1706-1712
Author(s):  
Anton Vikaeus ◽  
Erik Zackrisson ◽  
Christian Binggeli

ABSTRACT The upcoming James Webb Space Telescope (JWST) will allow observations of high-redshift galaxies at fainter detection levels than ever before, and JWST surveys targeting gravitationally lensed fields are expected to bring z ≳ 6 objects with very low star formation rate (SFR) within reach of spectroscopic studies. As galaxies at lower and lower star formation activity are brought into view, many of the standard methods used in the analysis of integrated galaxy spectra are at some point bound to break down, due to violation of the assumptions of a well-sampled stellar initial mass function (IMF) and a slowly varying SFR. We argue that galaxies with SFR ∼ 0.1 M⊙ yr−1 are likely to turn up at the spectroscopic detection limit of JWST in lensed fields, and investigate to what extent star formation sampling may affect the spectral analysis of such objects. We use the slug spectral synthesis code to demonstrate that such effects are likely to have significant impacts on spectral diagnostics of, for example, the Balmer emission lines. These effects are found to stem primarily from SFRs varying rapidly on short (∼Myr) time-scales due to star formation in finite units (star clusters), whereas the effects of an undersampled IMF is deemed insignificant in comparison. In contrast, the ratio between the He ii- and H i-ionizing flux is found to be sensitive to IMF-sampling as well as ICMF-sampling (sampling of the initial cluster mass function), which may affect interpretations of galaxies containing Population III stars or other sources of hard ionizing radiation.


Sign in / Sign up

Export Citation Format

Share Document