scholarly journals R-symmetry breaking and O’Raifeartaigh model with global symmetries at finite temperature

2011 ◽  
Vol 84 (12) ◽  
Author(s):  
Masato Arai ◽  
Yoshishige Kobayashi ◽  
Shin Sasaki
2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Igor P. Ivanov ◽  
Francisco Vazão

Abstract We discuss a rather common but often unnoticed pitfall which arises when deriving the bounded-from-below (BFB) conditions in multi-Higgs models with softly broken global symmetries. Namely, necessary and sufficient BFB conditions derived for the case with an exact symmetry can be ruined by introducing soft symmetry breaking terms. Using S4 and A4-symmetric three-Higgs-doublet models as an example, we argue that all published necessary and sufficient BFB conditions, even those which are correct for the exactly symmetric case, are no longer sufficient if soft symmetry breaking is added. Using the geometric formalism, we derive the exact necessary and sufficient BFB conditions for the 3HDM with the symmetry group S4, either exact or softly broken, and review the situation for the A4-symmetric case.


1996 ◽  
Vol 11 (10) ◽  
pp. 785-793 ◽  
Author(s):  
SHINYA KANEMURA ◽  
HARU-TADA SATO

We discuss phase structure of chiral symmetry breaking of the D-dimensional (2≤D≤3) Gross–Neveu model at finite temperature, density and constant curvature. We evaluate the effective potential in a weak background approximation to thermalize the model as well as in the leading order of the 1/N-expansion. A third-order critical line is observed similarly to the D=2 case.


2010 ◽  
Vol 25 (25) ◽  
pp. 4801-4826
Author(s):  
V. K. OIKONOMOU

In this paper, we study the influence of hard-supersymmetry-breaking terms in an N = 1, d = 4 supersymmetric model, with S1 × R3 space–time topology. It is found that for some interaction terms and for certain values of the couplings, supersymmetry is unbroken for small lengths of the compact radius and spontaneously breaks as the radius increases. Also, for another class of interaction terms, when the radius is large, supersymmetry is unbroken and spontaneously breaks as the radius decreases. It is pointed out that the two phenomena have similarities to the theory of metastable vacua at finite temperature, as well as to the inverse symmetry breaking of continuous symmetries at finite temperature (where the role of the temperature is played by the radius of the compact dimension).


2013 ◽  
Vol 88 (10) ◽  
Author(s):  
Matthew Civiletti ◽  
Mansoor Ur Rehman ◽  
Eric Sabo ◽  
Qaisar Shafi ◽  
Joshua Wickman

Sign in / Sign up

Export Citation Format

Share Document