scholarly journals Linear perturbations of low angular momentum accretion flow in the Kerr metric and the corresponding emergent gravity phenomena

2018 ◽  
Vol 98 (12) ◽  
Author(s):  
Md Arif Shaikh ◽  
Tapas Kumar Das
2020 ◽  
Vol 492 (4) ◽  
pp. 5366-5376 ◽  
Author(s):  
D N Razdoburdin

ABSTRACT We investigate the dynamics of linear perturbations in Keplerian flow under external stochastic force. To abstract from the details of flow structure and boundary conditions, we consider the problem in the shearing box approximation. An external force is assumed to have zero mean, even so, induced perturbations form a steady state, which provides angular momentum transfer to the periphery of the flow. The most effective scenario is based on the transient amplification of induced vortices with the following emission of a shearing sound wave, wherein the maximum of the flux linearly depends on Reynolds number. Thus such a mechanism is significant for astrophysical flows, for which enormous Reynolds numbers are typical. At the same time, addressing the problem analytically, we find that for incompressible fluid in the shearing box approximation stochastic forcing does not lead to average angular momentum transfer. Thus the compressibility of the fluid plays an important role here, and one cannot neglect it.


1997 ◽  
Vol 163 ◽  
pp. 210-214
Author(s):  
Ulf Torkelsson ◽  
Axel Brandenburg ◽  
Åke Nordlund ◽  
Robert F. Stein

AbstractThe shearing box has rapidly become the accepted way to investigate turbulence in Keplerian shear flows. In this paper we discuss to what extent and in which way the outcome of the shearing box is affected by the adopted boundary conditions, and how the shearing box can be modified to capture more of the physics of an accretion disc. The original shearing box model is too symmetric to generate a net accretion flow, but the symmetry can be broken by including the main effects of the cylindrical geometry of the real disc. However the quantitative change in the resulting angular momentum transport is small.


2019 ◽  
Vol 492 (3) ◽  
pp. 3272-3293 ◽  
Author(s):  
S M Ressler ◽  
E Quataert ◽  
J M Stone

ABSTRACT We study the flow structure in 3D magnetohydrodynamic (MHD) simulations of accretion on to Sagittarius A* via the magnetized winds of the orbiting Wolf–Rayet stars. These simulations cover over 3 orders of magnitude in radius to reach ≈300 gravitational radii, with only one poorly constrained parameter (the magnetic field in the stellar winds). Even for winds with relatively weak magnetic fields (e.g. plasma β ∼ 106), flux freezing/compression in the inflowing gas amplifies the field to β ∼ few well before it reaches the event horizon. Overall, the dynamics, accretion rate, and spherically averaged flow profiles (e.g. density, velocity) in our MHD simulations are remarkably similar to analogous hydrodynamic simulations. We attribute this to the broad distribution of angular momentum provided by the stellar winds, which sources accretion even absent much angular momentum transport. We find that the magneto-rotational instability is not important because of (i) strong magnetic fields that are amplified by flux freezing/compression, and (ii) the rapid inflow/outflow times of the gas and inefficient radiative cooling preclude circularization. The primary effect of magnetic fields is that they drive a polar outflow that is absent in hydrodynamics. The dynamical state of the accretion flow found in our simulations is unlike the rotationally supported tori used as initial conditions in horizon scale simulations, which could have implications for models being used to interpret Event Horizon Telescope and GRAVITY observations of Sgr A*.


2010 ◽  
Vol 19 (13) ◽  
pp. 2059-2069
Author(s):  
K. CHAKRABARTI ◽  
M. M. MAJUMDAR ◽  
SANDIP K. CHAKRABARTI

Accretion flow on a horizon is supersonic, no matter what the flow angular momentum or the spin of the black hole is. This means that a black hole accretion can always be viewed as a flow in a flat space–time through one or more convergent–divergent ducts. In this paper, we study how the area of cross-sections must vary in order that the flow has the same properties in both systems. We show that the accretion flow experiencing a shock is equivalent to having two ducts connected back-to-back, both with a neck where the flow becomes supersonic. We study the pressure and Mach number variations for corotating, contrarotating flows and flows around a black hole with evolving spin.


2011 ◽  
Vol 21 (08) ◽  
pp. 2261-2277 ◽  
Author(s):  
G. CONTOPOULOS ◽  
G. LUKES-GERAKOPOULOS ◽  
T. A. APOSTOLATOS

We study the orbits in a Manko–Novikov type metric (MN) which is a perturbed Kerr metric. There are periodic, quasi-periodic, and chaotic orbits, which are found in configuration space and on a surface of section for various values of the energy E and the z-component of the angular momentum Lz. For relatively large Lz there are two permissible regions of nonplunging motion bounded by two closed curves of zero velocity (CZV), while in the Kerr metric there is only one closed CZV of nonplunging motion. The inner permissible region of the MN metric contains mainly chaotic orbits, but it contains also a large island of stability. When Lz decreases, the two permissible regions join and chaos increases. Below a certain value of Lz, most orbits escape inwards and plunge through the horizon. On the other hand, as the energy E decreases (for fixed Lz) the outer permissible region shrinks and disappears. In the inner permissible region, chaos increases and for sufficiently small E most orbits are plunging. We find the positions of the main periodic orbits as functions of Lz and E, and their bifurcations. Around the main periodic orbit of the outer region, there are islands of stability that do not appear in the Kerr metric (integrable case). In a realistic binary system, because of the gravitational radiation, the energy E and the angular momentum Lz of an inspiraling compact object decrease and therefore the orbit of the object is nongeodesic. In fact, in an extreme mass ratio inspiraling (EMRI) system the energy E and the angular momentum Lz decrease adiabatically and therefore the motion of the inspiraling object is characterized by the fundamental frequencies which are drifting slowly in time. In the Kerr metric, the ratio of the fundamental frequencies changes strictly monotonically in time. However, in the MN metric when an orbit is trapped inside an island the ratio of the fundamental frequencies remains constant for some time. Hence, if such a phenomenon is observed this will indicate that the system is nonintegrable and therefore the central object is not a Kerr black hole.


2015 ◽  
Vol 600 ◽  
pp. 012012 ◽  
Author(s):  
Petra Suková ◽  
Agnieszka Janiuk

2004 ◽  
Vol 194 ◽  
pp. 230-230
Author(s):  
Kimitake Hayasaki ◽  
Atsuo T. Okazaki

We investigate the accretion flow around the neutron star in Be/X-ray binaries, using a 3D SPH code and the data imported from simulations by Okazaki et al. (2002) and Okazaki & Hayasaki (2004) for both a coplanar system and a misaligned system in which the Bo-star disk is inclined from the binary orbital plane by 30 degrees, with a short period (Porb = 24.3 days) and moderate eccentricity (e = 0.34). We find that a non-steady accretion disk is formed around the neutron star in the misaligned case as well as in the coplanar case. The disk size in the misaligned system is significantly larger because of its higher angular momentum than that in the coplanar system. We also find that the disk also evolves via a two-stage process, which consists of the initial developing stage and the latar developed stage.


2020 ◽  
Author(s):  
Deep Bhattacharjee

This paper is totally based on the mathematical physics of the Black holes. In Einstein’s theory of “General Relativity”, Schwarzschild solution is the vacuum solutions of the Einstein Field Equations that describes the gravity potential from outside the body of a spherically symmetric object having zero charge, zero mass and zero cosmological constant[1]. It was discovered by Karl Schwarzschild in 1916, a little more than a month after the publication of the famous GR and the singularity is a point singularity which can be best described as a coordinate singularity rather than a real singularity, however, the drawback of this theory is that it fails to take into account the real life scenario of black holes with charge and spin angular momentum. The black hole is based on event horizon and Schwarzschild radius. However, Physicists were trying to develop a metric for the real life scenario of a black hole with a spin angular momen-tum and ultimately the exact solution of a charged rotating black hole had been discovered by Roy Kerr in 1965 as the Kerr-Newman metric[2][3]. The Kerr metric is one of the toughest metric in physics and is the extensional generalization to a rotating body of the Schwarzschild metric. The metric describes the vacuum geometry of space-time around a rotating axially-symmetric black hole with a quasipotential event horizon. In Kerr metric there are two event hori-zons (inner and outer), two ergospheres and an ergosurface. The most important effect of the Kerr metric is the frame dragging (also known as Lense-Thirring Precession) is a distinctive prediction of General relativity. The first direct observation of the collision of two Kerr Black Holes has been discovered by LIGO in 2016 hence setting up a milestone of General Relativity in the history of Physics. Here, the Kerr metric has been introduced in the Boyer-Lindquist forms and it is derived from the Schwarzschild metric using the Spin-Coefficient formalism. According to the “Cosmic Censorship Hypothesis”, a naked singularity cannot exist in nature as nature always hides the singularity via an event horizon. However, in this paper I will prove the existence of the “Naked Singularity" taking the advantage of the Ring Singularity of the Kerr Black Hole and thereby making the way to manipulate the mathematics by taking the larger root of Δ as zero and thereby vanishing the ergosphere and event horizon making the way for the naked ring singularity which can be easily connected via a cylindrical wormhole and as ‘a wormhole is a black hole without an event horizon’ therefore, this cylindrical connection paved the way for the Einstein-Rosen Bridge allowing particles or null rays to travel from one universe to another ending up in a future directed Cauchy horizon while changing constantly from spatial to temporal and again spatial paving the entrance to another Kerr Black hole (which would act as a white hole) in the other universes. I will not go in detail about the contradiction of ‘Chronology Protection Conjecture” [4]whether the Stress-Energy-Momentum Tensor can violate the ANEC (Average Null Energy Conditions) or not with the values of less than zero or greater than, equal to zero, instead I will focus definitely on the creation of the mathematical formulation of a wormhole from a Naked Ring Kerr Singularity of a Kerr Black Hole without any event horizon or ergosphere. Another important thing to mention in this paper is that I have taken the time to be imaginary[5] as because, a singularity being an eternal point of time can only be smoothen out if the time is imaginary rather than real which will allow the particle or null rays inside a wormhole to cross the singularity and making entrance to the other universe. The final conclusion would be to determine the mass-energy equivalence principle as spin angular momentum increases with a decrease in BH mass due to the vanishing event horizon and ergosphere thereby maintaining the equivalence via apparent and absolute masses in relation to spin J along the orthogonal Z axis. A ‘NAKED SINGULARITY’ alters every parameters of a BH and to include this parameters along with affine spin coefficient, it has been proved that without any spin angular momentum the generation of wormhole and vanishing of event horizon and singularity is not possible.


Sign in / Sign up

Export Citation Format

Share Document