Extremal Kerr Black Holes, Naked Singularity & Wormholes

2020 ◽  
Author(s):  
Deep Bhattacharjee

This paper is totally based on the mathematical physics of the Black holes. In Einstein’s theory of “General Relativity”, Schwarzschild solution is the vacuum solutions of the Einstein Field Equations that describes the gravity potential from outside the body of a spherically symmetric object having zero charge, zero mass and zero cosmological constant[1]. It was discovered by Karl Schwarzschild in 1916, a little more than a month after the publication of the famous GR and the singularity is a point singularity which can be best described as a coordinate singularity rather than a real singularity, however, the drawback of this theory is that it fails to take into account the real life scenario of black holes with charge and spin angular momentum. The black hole is based on event horizon and Schwarzschild radius. However, Physicists were trying to develop a metric for the real life scenario of a black hole with a spin angular momen-tum and ultimately the exact solution of a charged rotating black hole had been discovered by Roy Kerr in 1965 as the Kerr-Newman metric[2][3]. The Kerr metric is one of the toughest metric in physics and is the extensional generalization to a rotating body of the Schwarzschild metric. The metric describes the vacuum geometry of space-time around a rotating axially-symmetric black hole with a quasipotential event horizon. In Kerr metric there are two event hori-zons (inner and outer), two ergospheres and an ergosurface. The most important effect of the Kerr metric is the frame dragging (also known as Lense-Thirring Precession) is a distinctive prediction of General relativity. The first direct observation of the collision of two Kerr Black Holes has been discovered by LIGO in 2016 hence setting up a milestone of General Relativity in the history of Physics. Here, the Kerr metric has been introduced in the Boyer-Lindquist forms and it is derived from the Schwarzschild metric using the Spin-Coefficient formalism. According to the “Cosmic Censorship Hypothesis”, a naked singularity cannot exist in nature as nature always hides the singularity via an event horizon. However, in this paper I will prove the existence of the “Naked Singularity" taking the advantage of the Ring Singularity of the Kerr Black Hole and thereby making the way to manipulate the mathematics by taking the larger root of Δ as zero and thereby vanishing the ergosphere and event horizon making the way for the naked ring singularity which can be easily connected via a cylindrical wormhole and as ‘a wormhole is a black hole without an event horizon’ therefore, this cylindrical connection paved the way for the Einstein-Rosen Bridge allowing particles or null rays to travel from one universe to another ending up in a future directed Cauchy horizon while changing constantly from spatial to temporal and again spatial paving the entrance to another Kerr Black hole (which would act as a white hole) in the other universes. I will not go in detail about the contradiction of ‘Chronology Protection Conjecture” [4]whether the Stress-Energy-Momentum Tensor can violate the ANEC (Average Null Energy Conditions) or not with the values of less than zero or greater than, equal to zero, instead I will focus definitely on the creation of the mathematical formulation of a wormhole from a Naked Ring Kerr Singularity of a Kerr Black Hole without any event horizon or ergosphere. Another important thing to mention in this paper is that I have taken the time to be imaginary[5] as because, a singularity being an eternal point of time can only be smoothen out if the time is imaginary rather than real which will allow the particle or null rays inside a wormhole to cross the singularity and making entrance to the other universe. The final conclusion would be to determine the mass-energy equivalence principle as spin angular momentum increases with a decrease in BH mass due to the vanishing event horizon and ergosphere thereby maintaining the equivalence via apparent and absolute masses in relation to spin J along the orthogonal Z axis. A ‘NAKED SINGULARITY’ alters every parameters of a BH and to include this parameters along with affine spin coefficient, it has been proved that without any spin angular momentum the generation of wormhole and vanishing of event horizon and singularity is not possible.

2020 ◽  
Author(s):  
Deep Bhattacharjee

The existence of the “Naked Singularity" has been shown taking the advantage of the Ring Singularity of the Kerr Black Hole and thereby making the way to manipulate the mathematics by taking the larger root of Δ as zero and thereby vanishing the ergosphere and event horizon making the way for the naked ring singularity which can be easily connected via a cylindrical wormhole and as ‘a wormhole is a black hole without an event horizon’ therefore, this cylindrical connection paved the way for the Einstein-Rosen Bridge allowing particles or null rays to travel from one universe to another ending up in a future directed Cauchy horizon while changing constantly from spatial to temporal and again spatial paving the entrance to another Kerr Black hole (which would act as a white hole) in the other universes.


Author(s):  
Bo Gao ◽  
Xue-Mei Deng

The neutral time-like particle’s bound orbits around modified Hayward black holes have been investigated. We find that both in the marginally bound orbits (MBO) and the innermost stable circular orbits (ISCO), the test particle’s radius and its angular momentum are all more sensitive to one of the parameters [Formula: see text]. Especially, modified Hayward black holes with [Formula: see text] could mimic the same ISCO radius around the Kerr black hole with the spin parameter up to [Formula: see text]. Small [Formula: see text] could mimic the ISCO of small-spinning test particles around Schwarzschild black holes. Meanwhile, rational (periodic) orbits around modified Hayward black holes have also been studied. The epicyclic frequencies of the quasi-circular motion around modified Hayward black holes are calculated and discussed with respect to the observed Quasi-periodic oscillations (QPOs) frequencies. Our results show that rational orbits around modified Hayward black holes have different values of the energy from the ones of Schwarzschild black holes. The epicyclic frequencies in modified Hayward black holes have different frequencies from Schwarzschild and Kerr ones. These might provide hints for distinguishing modified Hayward black holes from Schwarzschild and Kerr ones by using the dynamics of time-like particles around the strong gravitational field.


Angular momentum in axisymmetric space-times is investigated. The conclusions lead to a general definition suitable for all asymptoticallyflat spaces which is valid both at infinity and on the event horizon of a black hole. This first paper restricts attention to considerations at infinity. Working in terms of the spin coefficient formalism, the field equations are solved asymptotically at large distances and the definition is evaluated. A conservation law is derived and finally the effect on the angular momentum of a supertranslation of the coordinates is discussed.


2011 ◽  
Vol 312-315 ◽  
pp. 27-32
Author(s):  
R. Leticia Corral Bustamante ◽  
Aarón Raúl Rodríguez-Corral ◽  
T.J Amador-Parra ◽  
E.A. Vázquez-Tapia

Cosmic censorship!: black hole wrapped up by its entropy and hidden by its event horizon. In this paper, we postulate a metric to solve the Einstein equations of general relativity, which predicts the thermodynamic behavior of a gigantic mass that collapses to a black hole; taking into account the third law of thermodynamics that states that neither physical process can produce a naked singularity. However, under certain conditions, the model allows to evident violation to the cosmic censorship, exposing the hole nakedness. During the collapse of the hole, quantum effects appear: the area decrease and radiation produced has a high entropy, so that increases total entropy and expose the presence of the hole, while the appearance of the event horizon hide the singularity of the exterior gazes. It is verified that in certain circumstances, the model predicts that the hole mass is bigger than its angular momentum; and in all circumstances, this predicts an hole with enormous superficial graveness that satisfy a relationship of the three parameters that describe the hole (mass, charge and angular momentum); factors all indicative that the singularity is not naked. Then, there are no apparent horizons in accord with cosmic censorship conjecture. Even though the surface gravity of the hole prevents destroying its horizon wrapping singularity, there exists evidence of this singularity by the results of the spin-mass relationship and the escape velocity obtained. The lost information and the slow rate of rotation of the semi-major axis of the mass (dragging space and time around itself as it rotates), agree with Einstein's prediction, show the transport of energy through heat and mass transfer, which were measured by entropy of the hole by means of coordinated semi-spherical that include the different types of intrinsic energy to the process of radiation of the hole event horizon.


2016 ◽  
Vol 25 (12) ◽  
pp. 1644015
Author(s):  
Roberto Emparan ◽  
Marina Martínez

The fusion of two black holes — a signature phenomenon of General Relativity — is usually regarded as a process so complex that nothing short of a supercomputer simulation can accurately capture it. In this essay, we explain how the event horizon of the merger can be found in an exact analytic way in the limit where one of the black holes is much smaller than the other. Remarkably, the ideas and techniques involved are elementary: the equivalence principle, null geodesics in the Schwarzschild solution, and the notion of event horizon itself. With these, one can identify features such as the line of caustics at which light rays enter the horizon, and find indications of universal critical behavior when the two black holes touch.


2020 ◽  
Vol 35 (35) ◽  
pp. 2050291
Author(s):  
S. I. Kruglov

We consider rational nonlinear electrodynamics with the Lagrangian [Formula: see text] ([Formula: see text] is the Lorentz invariant), proposed in Ref. 63, coupled to General Relativity. The effective geometry induced by nonlinear electrodynamics corrections are found. We determine shadow’s size of regular non-rotating magnetic black holes and compare them with the shadow size of the super-massive M87[Formula: see text] black hole imaged by the Event Horizon Telescope collaboration. Assuming that the black hole mass has a pure electromagnetic nature, we obtain the black hole magnetic charge. The size of the shadow obtained is very close to the shadow size of non-regular neutral Schwarzschild black holes. As a result, we can interpret the super-massive M87[Formula: see text] black hole as a regular (without singularities) magnetized black hole.


2009 ◽  
Vol 18 (14) ◽  
pp. 2221-2229 ◽  
Author(s):  
R. MAIER ◽  
I. DAMIÃO SOARES

The dynamics of gravitational collapse is examined in the realm of string-based formalism of D-branes which encompasses general relativity as a low energy limit. A complete analytical solution is given to the spherically symmetric collapse of a pure dust star, including its matching with a corrected Schwarzschild exterior space–time. The collapse forms a black hole (an exterior event horizon) enclosing not a singularity but perpetually bouncing matter in the infinite chain of space–time maximal analytical extensions inside the outer event horizon. This chain of analytical extensions has a structure analogous to that of the Reissner–Nordstrom solution. The interior trapped bouncing matter has the possibility of being expelled by disruptive nonlinear resonance mechanisms.


2017 ◽  
Vol 26 (14) ◽  
pp. 1750156 ◽  
Author(s):  
Ahmed Alhamzawi

A study of the shadow cast by rotating black holes in different models of modified gravity is presented. It is shown that the size of the shadow cast depends on the modified gravity model used. The distortions of the shadow cast by modified gravity black holes are investigated and the effects are compared with the distortions cast by Kerr black hole. The shadow of a rotating black hole in modified gravity is found to be similar to the shadow cast by Kerr black hole but with different sizes and distortion effects. The naked singularity by rotating modified gravity black hole is discussed. Finally, it is shown that some modified gravity models can present a considerable contribution to the size of black hole shadow.


Author(s):  
F. Tamburini ◽  
F. Feleppa ◽  
B. Thidé

We describe and present the first observational evidence that light propagating near a rotating black hole is twisted in phase and carries orbital angular momentum. The novel use of this physical observable as an additional tool for the previously known techniques of gravitational lensing allows us to directly measure, for the first time, the spin parameter of a black hole. With the additional information encoded in the orbital angular momentum, not only can we reveal the actual rotation of the compact object, but we can also use rotating black holes as probes to test general relativity.


Sign in / Sign up

Export Citation Format

Share Document