scholarly journals Disk Structure and Evolution Around the Neutron Star in Be/X-Ray Binaries

2004 ◽  
Vol 194 ◽  
pp. 230-230
Author(s):  
Kimitake Hayasaki ◽  
Atsuo T. Okazaki

We investigate the accretion flow around the neutron star in Be/X-ray binaries, using a 3D SPH code and the data imported from simulations by Okazaki et al. (2002) and Okazaki & Hayasaki (2004) for both a coplanar system and a misaligned system in which the Bo-star disk is inclined from the binary orbital plane by 30 degrees, with a short period (Porb = 24.3 days) and moderate eccentricity (e = 0.34). We find that a non-steady accretion disk is formed around the neutron star in the misaligned case as well as in the coplanar case. The disk size in the misaligned system is significantly larger because of its higher angular momentum than that in the coplanar system. We also find that the disk also evolves via a two-stage process, which consists of the initial developing stage and the latar developed stage.

2020 ◽  
Vol 496 (3) ◽  
pp. 2704-2714
Author(s):  
Erlin Qiao ◽  
B F Liu

ABSTRACT Observationally, an anticorrelation between the X-ray photon index Γ (obtained by fitting the X-ray spectrum between 0.5 and 10 keV with a single power law) and the X-ray luminosity L0.5-10 keV, i.e. a softening of the X-ray spectrum with decreasing L0.5-10 keV, is found in neutron star low-mass X-ray binaries (NS-LMXBs) in the range of $L_{\rm 0.5\!-\!10\,keV}\sim 10^{34}\!-\!10^{36}\ \rm erg\ s^{-1}$. In this paper, we explain the observed anticorrelation between Γ and L0.5–10 keV within the framework of the self-similar solution of the advection-dominated accretion flow (ADAF) around a weakly magnetized NS. The ADAF model intrinsically predicts an anticorrelation between Γ and L0.5–10 keV. In the ADAF model, there is a key parameter, fth, which describes the fraction of the ADAF energy released at the surface of the NS as thermal emission to be scattered in the ADAF. We test the effect of fth on the anticorrelation between Γ and L0.5–10 keV. It is found that the value of fth can significantly affect the anticorrelation between Γ and L0.5–10 keV. Specifically, the anticorrelation between Γ and L0.5–10 keV becomes flatter with decreasing fth as taking fth = 0.1, 0.03, 0.01, 0.005, 0.003, and 0, respectively. By comparing with a sample of non-pulsating NS-LMXBs with well measured Γ and L0.5–10 keV, we find that indeed only a small value of 0.003 ≲ fth ≲ 0.1 is needed to match the observed anticorrelation between Γ and L0.5–10 keV. Finally, we argue that the small value of fth ≲ 0.1 derived in this paper further confirms our previous conclusion that the radiative efficiency of NSs with an ADAF accretion may not be as high as $\epsilon \sim {\dot{M} GM\over R_{*}}/{\dot{M} c^2}\sim 0.2$.


2020 ◽  
Vol 495 (2) ◽  
pp. 2408-2415
Author(s):  
Pei-Xin Shen ◽  
Wei-Min Gu

ABSTRACT When the matter from a companion star is accreted towards the central compact accretor, i.e. a black hole (BH) or a neutron star (NS), an accretion disc and a jet outflow will form, providing bight X-ray and radio emission, which is known as X-ray binaries (XRBs). In the low/hard state, there exist disc–jet couplings in XRBs, but it remains uncertain whether the jet power comes from the disc or the central accretor. Moreover, black hole X-ray binaries (BHXRBs) have different properties compared with neutron star X-ray binaries (NSXRBs): quiescent BHXRBs are typically two to three orders of magnitude less luminous than NSXRBs in X-ray, whereas BHXRBs are more radio loud than NSXRBs. In observations, an empirical correlation has been established between radio and X-ray luminosity, $L_{\rm R} \propto L_{\rm X}^b$, where b ∼ 0.7 for BHXRBs and b ∼ 1.4 for non-pulsating NSXRBs. However, there are some outliers of BHXRBs showing unusually steep correlation as NSXRBs at higher luminosities. In this work, under the assumption that the origin of jet power is related to the internal energy of the inner disc, we apply our magnetized, radiatively efficient thin disc model and the well-known radiatively inefficient accretion flow model to NSXRBs and BHXRBs. We find that the observed radio/X-ray correlations in XRBs can be well understood by the disc–jet couplings.


2020 ◽  
Vol 493 (1) ◽  
pp. 1318-1327 ◽  
Author(s):  
J van den Eijnden ◽  
N Degenaar ◽  
R M Ludlam ◽  
A S Parikh ◽  
J M Miller ◽  
...  

ABSTRACT It is commonly assumed that the properties and geometry of the accretion flow in transient low-mass X-ray binaries (LMXBs) significantly change when the X-ray luminosity decays below ∼10−2 of the Eddington limit (LEdd). However, there are few observational cases where the evolution of the accretion flow is tracked in a single X-ray binary over a wide dynamic range. In this work, we use NuSTAR and NICER observations obtained during the 2018 accretion outburst of the neutron star LMXB 4U 1608−52, to study changes in the reflection spectrum. We find that the broad Fe–Kα line and Compton hump, clearly seen during the peak of the outburst when the X-ray luminosity is ∼1037 erg s−1 (∼0.05 LEdd), disappear during the decay of the outburst when the source luminosity drops to ∼4.5 × 1035 erg s−1 (∼0.002 LEdd). We show that this non-detection of the reflection features cannot be explained by the lower signal-to-noise ratio at lower flux, but is instead caused by physical changes in the accretion flow. Simulating synthetic NuSTAR observations on a grid of inner disc radius, disc ionization, and reflection fraction, we find that the disappearance of the reflection features can be explained by either increased disc ionization (log ξ ≳ 4.1) or a much decreased reflection fraction. A changing disc truncation alone, however, cannot account for the lack of reprocessed Fe–Kα emission. The required increase in ionization parameter could occur if the inner accretion flow evaporates from a thin disc into a geometrically thicker flow, such as the commonly assumed formation of a radiatively inefficient accretion flow at lower mass accretion rates.


2004 ◽  
Vol 194 ◽  
pp. 144-145
Author(s):  
A. T. Okazaki ◽  
K. Hayasaki

AbstractWe study the interaction between the Be-star disk and the neutron star in Be/X-ray binaries by three dimensional SPH simulations. We find that, the resonant, truncation of the Be disk works except for systems with extremely high orbital eccentricity or large misalignment angles between the Be disk and the orbital plane. Owing to the truncation, the mass-capture rate by the neutron star is sensitive both to the orbital eccentricity and to the angle of misalignment. It is single-peaked in coplanar systems and in systems with small misalignment angles, whereas it, becomes double-peaked in systems with large misalignment angles.


2004 ◽  
Vol 218 ◽  
pp. 449-450
Author(s):  
Kimitake Hayasaki ◽  
Atsuo T. Okazaki

We study accretion onto the neutron star in Be/X-ray binaries, using a 3D SPH code and the data imported from a high resolution simulation by Okazaki et al. (2002) for a coplanar system with a short period (Porb = 24.3 d) and moderate eccentricity (e = 0.34). We find that a time-dependent accretion disk is formed around the neutron star in Be/X-ray binaries. The disk shrinks after the periastron passage of the Be star and restores its radius afterwards. Our simulations show that the truncated Be disk model for Be/X-ray binaries is consistent with the observed X-ray behavior.


2020 ◽  
Vol 498 (3) ◽  
pp. 3351-3367
Author(s):  
A Marino ◽  
J Malzac ◽  
M Del Santo ◽  
S Migliari ◽  
R Belmont ◽  
...  

ABSTRACT Multiwavelength spectral energy distributions of low-mass X-ray binaries (LMXBs) in the hard state are determined by the emission from a jet, for frequencies up to mid-infrared, and emission from the accretion flow in the optical to X-ray range. In the last years, the flat radio-to-mid-IR spectra of black hole (BH) X-ray binaries was described using the internal shocks model, which assumes that the fluctuations in the velocity of the ejecta along the jet are driven by the fluctuations in the accretion flow, described by the X-ray power density spectrum (PDS). In this work, we attempt to apply this model for the first time to a neutron star (NS) LMXB, i.e. 4U 0614 + 091. We used the multiwavelength data set obtained in 2006, comprising data from radio to X-ray, and applied a model that includes an irradiated disc model for the accretion flow and an updated version of the internal shocks code for the ejection. The new version of the code allows to change the geometry of the jet for the case of non-conical jets. Only two alternative scenarios provide a satisfactory description of the data: using the X-ray PDS but in a non-conical geometry for the jet, or either using a conical geometry but with a ‘flicker-noise’ PDS. Both scenarios would imply some differences with the results obtained with similar models on BH X-ray binaries, shedding light on the possibility that jets in NS and BH binaries might somehow have a different geometry or a different coupling with the accretion flow.


2004 ◽  
Vol 194 ◽  
pp. 211-211
Author(s):  
P. Muhli ◽  
P. J. Hakala ◽  
L. Hjalmarsdotter ◽  
D. C. Hannikainen ◽  
J. Schultz

A few Galactic Low Mass X-Ray Binaries (LMXBs) have shown drastically evolving X-ray and/or optical orbital light curves. In two short-period LMXBs, MS 1603+2600 (= UW CrB, Porb = 111 min) and 4U 1916-053 (see e.g. Homer et al. 2001), the variations in the light curve morphology seem to be repeating in a periodic manner. We present first results of a photometric monitoring campaign of MS 1603+2600, showing evidence of a 5-day superorbital period in this yet unclassified source. The observations also unraveled optical flares, reminiscent of type I bursts, suggesting a neutron star primary.


2021 ◽  
Vol 502 (1) ◽  
pp. L72-L78
Author(s):  
K Mohamed ◽  
E Sonbas ◽  
K S Dhuga ◽  
E Göğüş ◽  
A Tuncer ◽  
...  

ABSTRACT Similar to black hole X-ray binary transients, hysteresis-like state transitions are also seen in some neutron-star X-ray binaries. Using a method based on wavelets and light curves constructed from archival Rossi X-ray Timing Explorer observations, we extract a minimal timescale over the complete range of transitions for 4U 1608-52 during the 2002 and 2007 outbursts and the 1999 and 2000 outbursts for Aql X-1. We present evidence for a strong positive correlation between this minimal timescale and a similar timescale extracted from the corresponding power spectra of these sources.


Author(s):  
R Pattnaik ◽  
K Sharma ◽  
K Alabarta ◽  
D Altamirano ◽  
M Chakraborty ◽  
...  

Abstract Low Mass X-ray binaries (LMXBs) are binary systems where one of the components is either a black hole or a neutron star and the other is a less massive star. It is challenging to unambiguously determine whether a LMXB hosts a black hole or a neutron star. In the last few decades, multiple observational works have tried, with different levels of success, to address this problem. In this paper, we explore the use of machine learning to tackle this observational challenge. We train a random forest classifier to identify the type of compact object using the energy spectrum in the energy range 5-25 keV obtained from the Rossi X-ray Timing Explorer archive. We report an average accuracy of 87±13% in classifying the spectra of LMXB sources. We further use the trained model for predicting the classes for LMXB systems with unknown or ambiguous classification. With the ever-increasing volume of astronomical data in the X-ray domain from present and upcoming missions (e.g., SWIFT, XMM-Newton, XARM, ATHENA, NICER), such methods can be extremely useful for faster and robust classification of X-ray sources and can also be deployed as part of the data reduction pipeline.


Sign in / Sign up

Export Citation Format

Share Document