scholarly journals Dynamic critical exponent z of the three-dimensional Ising universality class: Monte Carlo simulations of the improved Blume-Capel model

2020 ◽  
Vol 101 (2) ◽  
Author(s):  
Martin Hasenbusch
2017 ◽  
Vol 28 (08) ◽  
pp. 1750099
Author(s):  
F. W. S. Lima

We investigate the critical properties of the equilibrium and nonequilibrium two-dimensional (2D) systems on Solomon networks with both nearest and random neighbors. The equilibrium and nonequilibrium 2D systems studied here by Monte Carlo simulations are the Ising and Majority-vote 2D models, respectively. We calculate the critical points as well as the critical exponent ratios [Formula: see text], [Formula: see text], and [Formula: see text]. We find that numerically both systems present the same exponents on Solomon networks (2D) and are of different universality class than the regular 2D ferromagnetic model. Our results are in agreement with the Grinstein criterion for models with up and down symmetry on regular lattices.


2021 ◽  
Author(s):  
Masahide Sato

Abstract Performing isothermal-isochoric Monte Carlo simulations, I examine the types of clusters that dumbbell-like one–patch particles form in thin space between two parallel walls, assuming that each particle is synthesized through the merging of two particles, one non-attracting and the other attracting for which, for example, the inter-particle interaction is approximated by the DLVO model. The shape of these dumbbell-like particles is controlled by the ratio of the diameters q of the two spherical particles and by the dimensionless distance l between them. Using a modified Kern–Frenkel potential, I examine the dependence of the cluster shape on l and q. Large island-like clusters are created when q < 1. With increasing q, the clusters become chain-like. When q increases further, elongated clusters and regular polygonal clusters are created. In hte simulations, the cluster shape becomes three-dimensional with increasing l because the thickness of the thin system increases proportionally to l.


2012 ◽  
Vol 190 ◽  
pp. 39-42
Author(s):  
M. Medvedeva ◽  
Pavel V. Prudnikov

The dynamic critical behavior of the three-dimensional Heisenberg model with longrangecorrelated disorder was studied by using short-time Monte Carlo simulations at criticality.The static and dynamic critical exponents are determined. The simulation was performed fromordered initial state. The obtained values of the exponents are in a good agreement with resultsof the field-theoretic description of the critical behavior of this model in the two-loopapproximation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masahide Sato

AbstractPerforming isothermal-isochoric Monte Carlo simulations, I examine the types of clusters that dumbbell-like one–patch particles form in thin space between two parallel walls, assuming that each particle is synthesized through the merging of two particles, one non-attracting and the other attracting for which, for example, the inter-particle interaction is approximated by the DLVO model . The shape of these dumbbell-like particles is controlled by the ratio of the diameters q of the two spherical particles and by the dimensionless distance l between these centers. Using a modified Kern–Frenkel potential, I examine the dependence of the cluster shape on l and q. Large island-like clusters are created when $$q<1$$ q < 1 . With increasing q, the clusters become chain-like . When q increases further, elongated clusters and regular polygonal clusters are created. In the simulations, the cluster shape becomes three-dimensional with increasing l because the thickness of the thin system increases proportionally to l.


1996 ◽  
Vol 181 (2) ◽  
pp. 422-428 ◽  
Author(s):  
Akira Satoh ◽  
Roy W. Chantrell ◽  
Shin-Ichi Kamiyama ◽  
Geoff N. Coverdale

Sign in / Sign up

Export Citation Format

Share Document