scholarly journals How attractive and repulsive interactions affect structure ordering and dynamics of glass-forming liquids

2021 ◽  
Vol 103 (5) ◽  
Author(s):  
Ankit Singh ◽  
Yashwant Singh
Author(s):  
Gareth Thomas

Silicon nitride and silicon nitride based-ceramics are now well known for their potential as hightemperature structural materials, e.g. in engines. However, as is the case for many ceramics, in order to produce a dense product, sintering additives are utilized which allow liquid-phase sintering to occur; but upon cooling from the sintering temperature residual intergranular phases are formed which can be deleterious to high-temperature strength and oxidation resistance, especially if these phases are nonviscous glasses. Many oxide sintering additives have been utilized in processing attempts world-wide to produce dense creep resistant components using Si3N4 but the problem of controlling intergranular phases requires an understanding of the glass forming and subsequent glass-crystalline transformations that can occur at the grain boundaries.


Author(s):  
Matthew R. Libera ◽  
Martin Chen

Phase-change erasable optical storage is based on the ability to switch a micron-sized region of a thin film between the crystalline and amorphous states using a diffraction-limited laser as a heat source. A bit of information can be represented as an amorphous spot on a crystalline background, and the two states can be optically identified by their different reflectivities. In a typical multilayer thin-film structure the active (storage) layer is sandwiched between one or more dielectric layers. The dielectric layers provide physical containment and act as a heat sink. A viable phase-change medium must be able to quench to the glassy phase after melting, and this requires proper tailoring of the thermal properties of the multilayer film. The present research studies one particular multilayer structure and shows the effect of an additional aluminum layer on the glass-forming ability.


2002 ◽  
Vol 82 (12) ◽  
pp. 2483-2497 ◽  
Author(s):  
T. K. Croat ◽  
A. K. Gangopadhyay ◽  
K. F. K Elton
Keyword(s):  

1997 ◽  
Vol 7 (11) ◽  
pp. 1635-1650 ◽  
Author(s):  
A. Faivre ◽  
L. David ◽  
J. Perez

Alloy Digest ◽  
2011 ◽  
Vol 60 (4) ◽  

Abstract DELORO 15, 21, 22, and 25 are prealloyed, gas-atomized, nickel-base powders for repair of glass-forming molds. This datasheet provides information on composition, physical properties, and hardness. It also includes information on powder metal forms. Filing Code: Ni-689. Producer or source: Stellite Coatings.


Sign in / Sign up

Export Citation Format

Share Document