scholarly journals Vesicle budding induced by binding of curvature-inducing proteins

2021 ◽  
Vol 104 (1) ◽  
Author(s):  
Hiroshi Noguchi
Keyword(s):  
PROTOPLASMA ◽  
1999 ◽  
Vol 207 (3-4) ◽  
pp. 125-132 ◽  
Author(s):  
C. Harter
Keyword(s):  

2011 ◽  
Vol 31 (11) ◽  
pp. 2692-2699 ◽  
Author(s):  
Emile Levy ◽  
Elodie Harmel ◽  
Martine Laville ◽  
Rocio Sanchez ◽  
Léa Emonnot ◽  
...  

2021 ◽  
Author(s):  
Ting Pan ◽  
Yangxuan Liu ◽  
Chengcheng Ling ◽  
Yuying Tang ◽  
Wei Tang ◽  
...  

AbstractClathrin-mediated vesicular formation and trafficking are highly conserved in eukaryotic cells and are responsible for molecular cargo transport and signal transduction among organelles. It remains largely unknown whether clathrin-coated vesicles can be generated from chloroplasts. CHLOROPLAST VESICULATION (CV)-containing vesicles (CVVs) generate from chloroplasts and mediate chloroplast degradation under abiotic stress. In this study, we showed that CV interacted with the clathrin heavy chain (CHC) and induced vesicle budding from the chloroplast inner envelope membrane. Defects on CHC2 and the dynamin-encoding DRP1A gene affected CVV budding and releasing from chloroplast. CHC2 is also required for CV-induced chloroplast degradation and hypersensitivity to water stress. Moreover, GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE (GAPC) interacts with CV and impairs the CV-CHC2 interaction. GAPC1 overexpression inhibited CV-mediated chloroplast degradation and hypersensitivity to water stress. CV silencing alleviated the hypersensitivity of gapc1gapc2 plant to water stress. Together, our work revealed a pathway of clathrin-assisted CVV budding from the chloroplast inner envelope membrane, which mediated the stress-induced chloroplast degradation and stress response.


2021 ◽  
Author(s):  
Janine McCaughey ◽  
Judith M. Mantell ◽  
Chris R. Neal ◽  
Kate Heesom ◽  
David J. Stephens

AbstractComplex machinery is required to drive secretory cargo export from the endoplasmic reticulum. In vertebrates, this includes transport and Golgi organization protein 1 (TANGO1), encoded by the Mia3 gene. Here, using genome engineering of human cells light microscopy, secretion assays, and proteomics, we show loss of Mia3/TANGO1 results in formation of numerous vesicles and a loss of early secretory pathway integrity. This restricts secretion not only of large proteins like procollagens but of all types of secretory cargo. Our data shows that Mia3/TANGO1 constrains the propensity of COPII to form vesicles promoting instead the formation of the ER-Golgi intermediate compartment. Thus, Mia3/TANGO1 facilities the secretion of complex and high volume cargoes from vertebrate cells.


2015 ◽  
Vol 112 (12) ◽  
pp. E1443-E1452 ◽  
Author(s):  
Zhiyong Bai ◽  
Barth D. Grant

Endosome-to-Golgi transport is required for the function of many key membrane proteins and lipids, including signaling receptors, small-molecule transporters, and adhesion proteins. The retromer complex is well-known for its role in cargo sorting and vesicle budding from early endosomes, in most cases leading to cargo fusion with the trans-Golgi network (TGN). Transport from recycling endosomes to the TGN has also been reported, but much less is understood about the molecules that mediate this transport step. Here we provide evidence that the F-BAR domain proteins TOCA-1 and TOCA-2 (Transducer of Cdc42 dependent actin assembly), the small GTPase CDC-42 (Cell division control protein 42), associated polarity proteins PAR-6 (Partitioning defective 6) and PKC-3/atypical protein kinase C, and the WAVE actin nucleation complex mediate the transport of MIG-14/Wls and TGN-38/TGN38 cargo proteins from the recycling endosome to the TGN in Caenorhabditis elegans. Our results indicate that CDC-42, the TOCA proteins, and the WAVE component WVE-1 are enriched on RME-1–positive recycling endosomes in the intestine, unlike retromer components that act on early endosomes. Furthermore, we find that retrograde cargo TGN-38 is trapped in early endosomes after depletion of SNX-3 (a retromer component) but is mainly trapped in recycling endosomes after depletion of CDC-42, indicating that the CDC-42–associated complex functions after retromer in a distinct organelle. Thus, we identify a group of interacting proteins that mediate retrograde recycling, and link these proteins to a poorly understood trafficking step, recycling endosome-to-Golgi transport. We also provide evidence for the physiological importance of this pathway in WNT signaling.


1996 ◽  
Vol 52 (12) ◽  
pp. 1021-1025 ◽  
Author(s):  
T. H. Söllner ◽  
J. E. Rothman

2018 ◽  
Vol 115 (6) ◽  
pp. E1127-E1136 ◽  
Author(s):  
Katharina B. Beer ◽  
Jennifer Rivas-Castillo ◽  
Kenneth Kuhn ◽  
Gholamreza Fazeli ◽  
Birgit Karmann ◽  
...  

Cells release extracellular vesicles (EVs) that mediate intercellular communication and repair damaged membranes. Despite the pleiotropic functions of EVs in vitro, their in vivo function is debated, largely because it is unclear how to induce or inhibit their formation. In particular, the mechanisms of EV release by plasma membrane budding or ectocytosis are poorly understood. We previously showed that TAT-5 phospholipid flippase activity maintains the asymmetric localization of the lipid phosphatidylethanolamine (PE) in the plasma membrane and inhibits EV budding by ectocytosis in Caenorhabditis elegans. However, no proteins that inhibit ectocytosis upstream of TAT-5 were known. Here, we identify TAT-5 regulators associated with retrograde endosomal recycling: PI3Kinase VPS-34, Beclin1 homolog BEC-1, DnaJ protein RME-8, and the uncharacterized Dopey homolog PAD-1. PI3Kinase, RME-8, and semiredundant sorting nexins are required for the plasma membrane localization of TAT-5, which is important to maintain PE asymmetry and inhibit EV release. PAD-1 does not directly regulate TAT-5 localization, but is required for the lipid flipping activity of TAT-5. PAD-1 also has roles in endosomal trafficking with the GEF-like protein MON-2, which regulates PE asymmetry and EV release redundantly with sorting nexins independent of the core retromer. Thus, in addition to uncovering redundant intracellular trafficking pathways, our study identifies additional proteins that regulate EV release. This work pinpoints TAT-5 and PE as key regulators of plasma membrane budding, further supporting the model that PE externalization drives ectocytosis.


Sign in / Sign up

Export Citation Format

Share Document