Deformation of liquid crystal droplets under the action of an external ac electric field

2001 ◽  
Vol 64 (2) ◽  
Author(s):  
B. I. Lev ◽  
V. G. Nazarenko ◽  
A. B. Nych ◽  
D. Schur ◽  
P. M. Tomchuk ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jun-Yong Lee ◽  
Jeong-Seon Yu ◽  
Jong-Hyun Kim

Abstract Colloidal particles dispersed in nematic liquid crystals are aligned along the orientation that minimizes the elastic free energy. Through applying an electric field to a nematic colloidal system, the orientation of the director can change. Consequently, colloidal particles realign to minimize the total free energy, which is the sum of the elastic and electric free energies. Herein, we demonstrate that if the preferred rotation directions given by the electric and elastic free energies are different during realignment, the rotation direction of the particle can be controlled by how we apply the electric field. When the strength of the electric field gradually increases, the particles rotate in the same direction as the rotation of the director. However, when a sufficiently high electric field is suddenly applied, the particles rotate in the opposite direction. In this study, we analyzed the effect of free energy on the bidirectional rotation behavior of the particles using a theoretical model. This study provides an effective approach to control the rotational behavior of colloidal particles over a wide-angle range between two orientational local minima.


2007 ◽  
Vol 40 (11) ◽  
pp. 3348-3351 ◽  
Author(s):  
Xiudong Sun ◽  
Yanbo Pei ◽  
Fengfeng Yao ◽  
Jianlong Zhang ◽  
Chunfeng Hou

1993 ◽  
Vol 47 (9) ◽  
pp. 1390-1393 ◽  
Author(s):  
H. Sasaki ◽  
M. Ishibashi ◽  
A. Tanaka ◽  
N. Shibuya ◽  
R. Hasegawa

A two-dimensional infrared (2D IR) spectrometer has been modified by the following methods to solve several problems on the 2D IR spectroscopy of electric-field-induced reorientation dynamics of a mixed nematic liquid crystal: (1) The response of the liquid crystal (LC) to an electric field was stabilized by an amplitude-modulated ac electric field. (2) Formulation of an anti-reflection coating (ARC) has been proposed to suppress the interference caused by multiple reflections between IR liquid crystal cell windows. (3) The Fourier transform procedure has been modified to correct the phase of the dynamic difference interferograms without spectral anomalies. These modifications can provide a better signal-to-noise ratio and reproducible 2D IR spectrum of a mixed nematic liquid crystal.


Sign in / Sign up

Export Citation Format

Share Document