scholarly journals Derivation of matrix product states for the Heisenberg spin chain with open boundary conditions

2017 ◽  
Vol 95 (3) ◽  
Author(s):  
Zhongtao Mei ◽  
C. J. Bolech
1991 ◽  
Vol 05 (03) ◽  
pp. 497-507 ◽  
Author(s):  
V.E. KOREPIN ◽  
A.C.T. WU

In a recent paper, B. Sutherland and B.S. Shastry have constructed an adiabatic process for the Heisenberg spin chain (spin ½) with respect to a change of boundary conditions. In this paper we calculate Berry’s phase for this process. We also evaluate the dependence of energy levels on boundary conditions which permits us to calculate the effective charge-carrying mass.


1998 ◽  
Vol 13 (24) ◽  
pp. 4213-4226 ◽  
Author(s):  
GUO-XING JU ◽  
SHI-KUN WANG ◽  
KE WU ◽  
CHI XIONG

We analyze the symmetries of the reflection equation for open XYZ model and find their solutions K± case by case. In the general open boundary conditions, the Lax pair for open one-dimensional XYZ spin-chain is given.


1999 ◽  
Vol 13 (07) ◽  
pp. 847-858
Author(s):  
YUN-ZHONG LAI ◽  
ZHAN-NING HU ◽  
J. Q. LIANG ◽  
FU-CHO PU

In this paper, we construct a Hamiltonian of the impurity model with next-nearest-neighbor interaction within the framework of the open boundary Heisenberg XYZ spin chain. This impurity model is an exactly solved one and it degenerates to the integrable XXZ impurity model under the triangular limit. It is the first approach to add the impurities and next-nearest-neighbor interaction to the integrable completely anisotropic Heisenberg spin chain. We find also that the impurity parameters in the bulk are real when the cross parameter is imaginary for the Hermitian Hamiltonian, or vice versa, when the next-nearest-neighbor interaction is introduced. The eigenvalue of the Hamiltonian and the Bethe ansatz equations for the trigonometric limit case are derived also.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Charles B. Thorn

Abstract Although the energy spectrum of the Heisenberg spin chain on a circle defined by$$ H=\frac{1}{4}\sum \limits_{k=1}^M\left({\sigma}_k^x{\sigma}_{k+1}^x+{\sigma}_k^y{\sigma}_{k+1}^y+\Delta {\sigma}_k^z{\sigma}_{k+1}^z\right) $$ H = 1 4 ∑ k = 1 M σ k x σ k + 1 x + σ k y σ k + 1 y + Δ σ k z σ k + 1 z is well known for any fixed M, the boundary conditions vary according to whether M ∈ 4ℕ + r, where r = −1, 0, 1, 2, and also according to the parity of the number of overturned spins in the state, In string theory all these cases must be allowed because interactions involve a string with M spins breaking into strings with M1< M and M − M1 spins (or vice versa). We organize the energy spectrum and degeneracies of H in the case ∆ = 0 where the system is equivalent to a system of free fermions. In spite of the multiplicity of special cases, in the limit M → ∞ the spectrum is that of a free compactified worldsheet field. Such a field can be interpreted as a compact transverse string coordinate x(σ) ≡ x(σ) + R0. We construct the bosonization formulas explicitly in all separate cases, and for each sector give the Virasoro conformal generators in both fermionic and bosonic formulations. Furthermore from calculations in the literature for selected classes of excited states, there is strong evidence that the only change for ∆ ≠ 0 is a change in the compactification radius R0→ R∆. As ∆ → −1 this radius goes to infinity, giving a concrete example of noncompact space emerging from a discrete dynamical system. Finally we apply our work to construct the three string vertex implied by a string whose bosonic coordinates emerge from this mechanism.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Pengcheng Lu ◽  
Yi Qiao ◽  
Junpeng Cao ◽  
Wen-Li Yang ◽  
Kang jie Shi ◽  
...  

Abstract A new nonlinear integral equation (NLIE) describing the thermodynamics of the Heisenberg spin chain is derived based on the t − W relation of the quantum transfer matrices. The free energy of the system in a magnetic field is thus obtained by solving the NLIE. This method can be generalized to other lattice quantum integrable models. Taking the SU(3)-invariant quantum spin chain as an example, we construct the corre- sponding NLIEs and compute the free energy. The present results coincide exactly with those obtained via other methods previously.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Linhu Li ◽  
Ching Hua Lee ◽  
Jiangbin Gong

AbstractNon-Hermitian systems have been shown to have a dramatic sensitivity to their boundary conditions. In particular, the non-Hermitian skin effect induces collective boundary localization upon turning off boundary coupling, a feature very distinct from that under periodic boundary conditions. Here we develop a full framework for non-Hermitian impurity physics in a non-reciprocal lattice, with periodic/open boundary conditions and even their interpolations being special cases across a whole range of boundary impurity strengths. We uncover steady states with scale-free localization along or even against the direction of non-reciprocity in various impurity strength regimes. Also present are Bloch-like states that survive albeit broken translational invariance. We further explore the co-existence of non-Hermitian skin effect and scale-free localization, where even qualitative aspects of the system’s spectrum can be extremely sensitive to impurity strength. Specific circuit setups are also proposed for experimentally detecting the scale-free accumulation, with simulation results confirming our main findings.


Sign in / Sign up

Export Citation Format

Share Document