scholarly journals Machine-learning inference of fluid variables from data using reservoir computing

2018 ◽  
Vol 98 (2) ◽  
Author(s):  
Kengo Nakai ◽  
Yoshitaka Saiki
2020 ◽  
Vol 27 (3) ◽  
pp. 373-389 ◽  
Author(s):  
Ashesh Chattopadhyay ◽  
Pedram Hassanzadeh ◽  
Devika Subramanian

Abstract. In this paper, the performance of three machine-learning methods for predicting short-term evolution and for reproducing the long-term statistics of a multiscale spatiotemporal Lorenz 96 system is examined. The methods are an echo state network (ESN, which is a type of reservoir computing; hereafter RC–ESN), a deep feed-forward artificial neural network (ANN), and a recurrent neural network (RNN) with long short-term memory (LSTM; hereafter RNN–LSTM). This Lorenz 96 system has three tiers of nonlinearly interacting variables representing slow/large-scale (X), intermediate (Y), and fast/small-scale (Z) processes. For training or testing, only X is available; Y and Z are never known or used. We show that RC–ESN substantially outperforms ANN and RNN–LSTM for short-term predictions, e.g., accurately forecasting the chaotic trajectories for hundreds of numerical solver's time steps equivalent to several Lyapunov timescales. The RNN–LSTM outperforms ANN, and both methods show some prediction skills too. Furthermore, even after losing the trajectory, data predicted by RC–ESN and RNN–LSTM have probability density functions (pdf's) that closely match the true pdf – even at the tails. The pdf of the data predicted using ANN, however, deviates from the true pdf. Implications, caveats, and applications to data-driven and data-assisted surrogate modeling of complex nonlinear dynamical systems, such as weather and climate, are discussed.


2021 ◽  
Author(s):  
Razvan V. Ababei ◽  
Matthew O. A. Ellis ◽  
Ian T. Vidamour ◽  
Dhilan S. Devadasan ◽  
Dan A. Allwood ◽  
...  

Abstract Machine learning techniques are commonly used to model complex relationships but implementations on digital hardware are relatively inefficient due to poor matching between conventional computer architectures and the structures of the algorithms they are required to simulate. Neuromorphic devices, and in particular reservoir computing architectures, utilize the inherent properties of physical systems to implement machine learning algorithms and so have the potential to be much more efficient. In this work, we demonstrate that the dynamics of individual domain walls in magnetic nanowires are suitable for implementing the reservoir computing paradigm in hardware. We modelled the dynamics of a domain wall placed between two anti-notches in a nickel nanowire using both a 1d collective coordinates model and micromagnetic simulations. When driven by an oscillating magnetic field, the domain exhibits non-linear dynamics within the potential well created by the anti-notches that are analogous to those of the Duffing oscillator. We exploit the domain wall dynamics for reservoir computing by modulating the amplitude of the applied magnetic field to inject time-multiplexed input signals into the reservoir, and show how this allows us to perform machine learning tasks including: the classification of (1) sine and square waves; (2) spoken digits and (3) non-temporal 2D toy data and hand written digits. Our work lays the foundation for the creation of nanoscale neuromorphic devices in which individual magnetic domain walls are used to perform complex data analysis tasks.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Razvan V. Ababei ◽  
Matthew O. A. Ellis ◽  
Ian T. Vidamour ◽  
Dhilan S. Devadasan ◽  
Dan A. Allwood ◽  
...  

AbstractMachine learning techniques are commonly used to model complex relationships but implementations on digital hardware are relatively inefficient due to poor matching between conventional computer architectures and the structures of the algorithms they are required to simulate. Neuromorphic devices, and in particular reservoir computing architectures, utilize the inherent properties of physical systems to implement machine learning algorithms and so have the potential to be much more efficient. In this work, we demonstrate that the dynamics of individual domain walls in magnetic nanowires are suitable for implementing the reservoir computing paradigm in hardware. We modelled the dynamics of a domain wall placed between two anti-notches in a nickel nanowire using both a 1D collective coordinates model and micromagnetic simulations. When driven by an oscillating magnetic field, the domain exhibits non-linear dynamics within the potential well created by the anti-notches that are analogous to those of the Duffing oscillator. We exploit the domain wall dynamics for reservoir computing by modulating the amplitude of the applied magnetic field to inject time-multiplexed input signals into the reservoir, and show how this allows us to perform machine learning tasks including: the classification of (1) sine and square waves; (2) spoken digits; and (3) non-temporal 2D toy data and hand written digits. Our work lays the foundation for the creation of nanoscale neuromorphic devices in which individual magnetic domain walls are used to perform complex data analysis tasks.


2020 ◽  
Author(s):  
Futo Tomizawa ◽  
Yohei Sawada

Abstract. Prediction of spatio-temporal chaotic systems is important in various fields, such as Numerical Weather Prediction (NWP). While data assimilation methods have been applied in NWP, machine learning techniques, such as Reservoir Computing (RC), are recently recognized as promising tools to predict spatio-temporal chaotic systems. However, the sensitivity of the skill of the machine learning based prediction to the imperfectness of observations is unclear. In this study, we evaluate the skill of RC with noisy and sparsely distributed observations. We intensively compare the performances of RC and Local Ensemble Transform Kalman Filter (LETKF) by applying them to the prediction of the Lorenz 96 system. Although RC can successfully predict the Lorenz 96 system if the system is perfectly observed, we find that RC is vulnerable to observation sparsity compared with LETKF. To overcome this limitation of RC, we propose to combine LETKF and RC. In our proposed method, the system is predicted by RC that learned the analysis time series estimated by LETKF. Our proposed method can successfully predict the Lorenz 96 system using noisy and sparsely distributed observations. Most importantly, our method can predict better than LETKF when the process-based model is imperfect.


2017 ◽  
Vol 31 (4) ◽  
pp. 457-476 ◽  
Author(s):  
Sebastián Basterrech ◽  
Gerardo Rubino

This paper deals with two ideas appeared during the last developing phase in Artificial Intelligence: Reservoir Computing (RC) and Random Neural Networks. Both have been very successful in many applications. We propose a new model belonging to the first class, taking the structure of the second for its dynamics. The new model is called Echo State Queuing Network. The paper positions the model in the global Machine Learning area, and provides examples of its use and performances. We show on largely used benchmarks that it is a very accurate tool, and we illustrate how it compares with standard RC models.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Sanjukta Krishnagopal ◽  
Yiannis Aloimonos ◽  
Michelle Girvan

We investigate the ways in which a machine learning architecture known as Reservoir Computing learns concepts such as “similar” and “different” and other relationships between image pairs and generalizes these concepts to previously unseen classes of data. We present two Reservoir Computing architectures, which loosely resemble neural dynamics, and show that a Reservoir Computer (RC) trained to identify relationships between image pairs drawn from a subset of training classes generalizes the learned relationships to substantially different classes unseen during training. We demonstrate our results on the simple MNIST handwritten digit database as well as a database of depth maps of visual scenes in videos taken from a moving camera. We consider image pair relationships such as images from the same class; images from the same class with one image superposed with noise, rotated 90°, blurred, or scaled; images from different classes. We observe that the reservoir acts as a nonlinear filter projecting the input into a higher dimensional space in which the relationships are separable; i.e., the reservoir system state trajectories display different dynamical patterns that reflect the corresponding input pair relationships. Thus, as opposed to training in the entire high-dimensional reservoir space, the RC only needs to learns characteristic features of these dynamical patterns, allowing it to perform well with very few training examples compared with conventional machine learning feed-forward techniques such as deep learning. In generalization tasks, we observe that RCs perform significantly better than state-of-the-art, feed-forward, pair-based architectures such as convolutional and deep Siamese Neural Networks (SNNs). We also show that RCs can not only generalize relationships, but also generalize combinations of relationships, providing robust and effective image pair classification. Our work helps bridge the gap between explainable machine learning with small datasets and biologically inspired analogy-based learning, pointing to new directions in the investigation of learning processes.


Sign in / Sign up

Export Citation Format

Share Document