scholarly journals Experimental examination of vorticity stripping from a wing-tip vortex in free-stream turbulence

2018 ◽  
Vol 3 (3) ◽  
Author(s):  
Hari C. Ghimire ◽  
Sean C. C. Bailey
2008 ◽  
Vol 601 ◽  
pp. 281-315 ◽  
Author(s):  
S. C. C. BAILEY ◽  
S. TAVOULARIS

Velocity measurements were performed in a wing-tip vortex wandering in free-stream turbulence using two four-wire hot-wire probes. Vortex wandering was well represented by a bi-normal probability density with increasing free-stream turbulence resulting in increased amplitude of wandering. The most dominant wavelength of wandering was found to remain unaffected by free-stream conditions. Two-point velocity measurements were used to reconstruct the vortex velocity profile in a frame of reference wandering with the vortex. Increasing turbulence intensity was found to increase the rate of decay of the vortex peak circumferential velocity while the radial location of this peak velocity remained unchanged. These results are consistent with several possible vortex decay mechanisms, including the stripping of vorticity by azimuthally aligned vortical structures, transfer of angular momentum from the vortex to these structures during their formation and the deformation and breakup of the vortex by strong free-stream eddies.


2020 ◽  
Vol 206 ◽  
pp. 104211
Author(s):  
Kamal Ben Miloud ◽  
Marouen Dghim ◽  
Hachimi Fellouah ◽  
Mohsen Ferchichi

2006 ◽  
Vol 43 (5) ◽  
pp. 1282-1291 ◽  
Author(s):  
S. C. C. Bailey ◽  
S. Tavoularis ◽  
B. H. K. Lee

Author(s):  
David Greenblatt ◽  
LaTunia Melton ◽  
Chung-Sheng Yao ◽  
Jerome Harris

1996 ◽  
Author(s):  
Andreas Vogt ◽  
Peter Baumann ◽  
Juergen Kompenhans ◽  
Morteza Gharib
Keyword(s):  

Author(s):  
Ricardo Hernandez-Rivera ◽  
Abel Hernandez-Guerrero ◽  
Cuauhtemoc Rubio-Arana ◽  
Raul Lesso-Arroyo

Recent studies have shown that the use of winglets in aircrafts wing tips have been able to reduce fuel consumption by reducing the lift-induced drag caused by wing tip vortex. This paper presents a 3-D numerical study to analyze the drag and lift forces, and the behavior of the vortexes generated in the wing tips from a modified commercial Boeing aircraft 767-300/ER. This type of aircraft does not contain winglets to control the wing tip vortex, therefore, the aerodynamic effects were analyzed adding two models of winglets to the wing tip. The first one is the vortex diffuser winglet and the second one is the tip fence winglet. The analyses were made for steady state and compressible flow, for a constant Mach number. The results show that the vortex diffuser winglet gives the best results, reducing the core velocity of the wing tip vortex up to 19%, the total drag force of the aircraft up to 3.6% and it leads to a lift increase of up to 2.4% with respect to the original aircraft without winglets.


Sign in / Sign up

Export Citation Format

Share Document