Three-dimensional visualization of viscous fingering for non-Newtonian fluids with chemical reactions that change viscosity

2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Sotheavuth Sin ◽  
Tetsuya Suekane ◽  
Yuichiro Nagatsu ◽  
Anindityo Patmonoaji
2018 ◽  
Vol 218 ◽  
pp. 04012
Author(s):  
Finsa Nurpandi ◽  
Agung Gumelar

One of chemistry is the chemical element that is represented by the symbol on the periodic table. The low level of activity, interest, and the result of chemistry learning in school is caused by the students generally having difficulty in solving problems related to chemical reactions. In addition, most of the chemical concepts are abstract so it is difficult to imagine the structure of molecules clearly. Augmented Reality can integrate digital elements with the real world in real time and follow the circumstances surrounding environment. Augmented Reality can provide a new more interactive concept in the learning process because users can directly interact naturally. By using Augmented Reality, the atoms in the periodic table will be scanned using a camera from an Android-based smartphone that has installed this app. The scan results are then compared with existing data and will show the molecular structure in three-dimensional form. Users can also observe reactions between atoms by combining multiple markers simultaneously. Augmented Reality application is built using the concept of user-centered design and Unity with personal license as development tools. By using this app, studying chemical reactions no longer requires a variety of chemicals that could be harmful to users.


Author(s):  
Kofi Freeman K. Adane ◽  
Mark F. Tachie

Three-dimensional laminar lid-driven and wall jet flows of various shear-thinning non-Newtonian and Newtonian fluids were numerically investigated. The complete nonlinear incompressible Navier-Stokes equation was solved using a collocated finite-volume based in-house CFD code. From the results, velocity profiles at several locations, jet spread rates, secondary flows and vorticity distributions were used to provide insight into the characteristics of three-dimensional laminar canonical flows of shear-thinning non-Newtonian and Newtonian fluids.


Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 179 ◽  
Author(s):  
Ramon Álvarez-Estrada

We review and improve previous work on non-equilibrium classical and quantum statistical systems, subject to potentials, without ab initio dissipation. We treat classical closed three-dimensional many-particle interacting systems without any “heat bath” ( h b ), evolving through the Liouville equation for the non-equilibrium classical distribution W c , with initial states describing thermal equilibrium at large distances but non-equilibrium at finite distances. We use Boltzmann’s Gaussian classical equilibrium distribution W c , e q , as weight function to generate orthogonal polynomials ( H n ’s) in momenta. The moments of W c , implied by the H n ’s, fulfill a non-equilibrium hierarchy. Under long-term approximations, the lowest moment dominates the evolution towards thermal equilibrium. A non-increasing Liapunov function characterizes the long-term evolution towards equilibrium. Non-equilibrium chemical reactions involving two and three particles in a h b are studied classically and quantum-mechanically (by using Wigner functions W). Difficulties related to the non-positivity of W are bypassed. Equilibrium Wigner functions W e q generate orthogonal polynomials, which yield non-equilibrium moments of W and hierarchies. In regimes typical of chemical reactions (short thermal wavelength and long times), non-equilibrium hierarchies yield approximate Smoluchowski-like equations displaying dissipation and quantum effects. The study of three-particle chemical reactions is new.


1972 ◽  
Vol 57 (7) ◽  
pp. 2722-2727 ◽  
Author(s):  
Susan H. Harms ◽  
Robert E. Wyatt

1990 ◽  
Vol 43 (12) ◽  
pp. 297-309 ◽  
Author(s):  
A. T. Winfree

Three-dimensional continua capable of recurrent local activation are observed—both in the laboratory and in mathematical models—to support persistent self-organizing patterns of activity most conveniently described in terms of vortex lines. These lines generally close in rings, which may be linked and knotted. In some cases they adopt stable configurations resembling tiny dynamos of millimeter dimensions. The dynamics of these “organizing centers” has been investigated in certain chemical reactions, in heart muscle, and numerically in digital computers. The pertinent mathematical principles appear to entail consequences of local reaction and neighborhood diffusion, in the form of a dependency of the vortex filament’s lateral motion upon its local geometry and, when too closely approached by another segment of vortex filament, upon the distance and orientation involved.


Sign in / Sign up

Export Citation Format

Share Document