scholarly journals Inverse cascade of hybrid helicity in BΩ -MHD turbulence

2019 ◽  
Vol 4 (7) ◽  
Author(s):  
Mélissa D. Menu ◽  
Sébastien Galtier ◽  
Ludovic Petitdemange
2016 ◽  
Vol 52 (1) ◽  
pp. 261-268
Author(s):  
R. Stepanov ◽  
◽  
V. Titov ◽  
◽  

2020 ◽  
Author(s):  
Timofey Zinyakov ◽  
Arakel Petrosyan

<p>Numerical studies of two-dimensional β-plane homogeneous magnetohydrodynamic turbulence are presented. The study of the fundamental properties of such turbulence allows understanding the evolution of various astrophysical objects from the Sun and stars to planetary systems, galaxies, and galaxy clusters. Energy spectra and cascade process in two-dimensional β-plane MHD are studied.</p><p>In this work the equations of two-dimensional magnetohydrodynamics with the Coriolis force in the β-plane approximation are used for the qualitative analysis and numerical simulation of processes in plasma astrophysics. The equations are solved on a square box of edge size 2π with periodic boundary conditions applying a the pseudospectral method using the 2/3 rule for dealiasing. The results of numerical simulation of two-dimensional β-plane MHD turbulence with a spatial resolution of 1024 × 1024 and 4096 × 4096 with different Rossby parameters β and different Reynolds numbers are presented.</p><p>It is found that only unsteady zonal flows with complex temporal dynamics are formed in two-dimensional β-plane magnetohydrodynamic turbulence. It is shown that flow nonstationarity is due to the appearance of isotropic magnetic islands caused by the Lorentz force in the system. The formation of Iroshnikov–Kraichnan spectrum is shown in the early stages of evolution of two-dimensional β-plane magnetohydrodynamic turbulence. The self-similarity of the decay of Iroshnikov–Kraichnan spectrum is studied. On long time scale violation of self-similarity of the decay and formation of Kolmogorov spectrum is discovered. The inverse cascade of kinetic energy, which is characteristic of the detected Kolmogorov spectrum, provides the formation of zonal flows.</p><p>This work was supported by the Russian Foundation for Basic Research (project no. 19-02-00016).</p>


1976 ◽  
Vol 77 (2) ◽  
pp. 321-354 ◽  
Author(s):  
A. Pouquet ◽  
U. Frisch ◽  
J. Léorat

To understand the turbulent generation of large-scale magnetic fields and to advance beyond purely kinematic approaches to the dynamo effect like that introduced by Steenbeck, Krause & Radler (1966)’ a new nonlinear theory is developed for three-dimensional, homogeneous, isotropic, incompressible MHD turbulence with helicity, i.e. not statistically invariant under plane reflexions. For this, techniques introduced for ordinary turbulence in recent years by Kraichnan (1971 a)’ Orszag (1970, 1976) and others are generalized to MHD; in particular we make use of the eddy-damped quasi-normal Markovian approximation. The resulting closed equations for the evolution of the kinetic and magnetic energy and helicity spectra are studied both theoretically and numerically in situations with high Reynolds number and unit magnetic Prandtl number.Interactions between widely separated scales are much more important than for non-magnetic turbulence. Large-scale magnetic energy brings to equipartition small-scale kinetic and magnetic excitation (energy or helicity) by the ‘Alfvén effect’; the small-scale ‘residual’ helicity, which is the difference between a purely kinetic and a purely magnetic helical term, induces growth of large-scale magnetic energy and helicity by the ‘helicity effect’. In the absence of helicity an inertial range occurs with a cascade of energy to small scales; to lowest order it is a −3/2 power law with equipartition of kinetic and magnetic energy spectra as in Kraichnan (1965) but there are −2 corrections (and possibly higher ones) leading to a slight excess of magnetic energy. When kinetic energy is continuously injected, an initial seed of magnetic field will grow to approximate equipartition, at least in the small scales. If in addition kinetic helicity is injected, an inverse cascade of magnetic helicity is obtained leading to the appearance of magnetic energy and helicity in ever-increasing scales (in fact, limited by the size of the system). This inverse cascade, predicted by Frischet al.(1975), results from a competition between the helicity and Alféh effects and yields an inertial range with approximately — 1 and — 2 power laws for magnetic energy and helicity. When kinetic helicity is injected at the scale linjand the rate$\tilde{\epsilon}^V$(per unit mass), the time of build-up of magnetic energy with scaleL[Gt ] linjis$t \approx L(|\tilde{\epsilon}^V|l^2_{\rm inj})^{-1/3}.$


2016 ◽  
Vol 791 ◽  
pp. 61-96 ◽  
Author(s):  
Moritz Linkmann ◽  
Arjun Berera ◽  
Mairi McKay ◽  
Julia Jäger

Spectral transfer processes in homogeneous magnetohydrodynamic (MHD) turbulence are investigated analytically by decomposition of the velocity and magnetic fields in Fourier space into helical modes. Steady solutions of the dynamical system which governs the evolution of the helical modes are determined, and a stability analysis of these solutions is carried out. The interpretation of the analysis is that unstable solutions lead to energy transfer between the interacting modes while stable solutions do not. From this, a dependence of possible interscale energy and helicity transfers on the helicities of the interacting modes is derived. As expected from the inverse cascade of magnetic helicity in 3-D MHD turbulence, mode interactions with like helicities lead to transfer of energy and magnetic helicity to smaller wavenumbers. However, some interactions of modes with unlike helicities also contribute to an inverse energy transfer. As such, an inverse energy cascade for non-helical magnetic fields is shown to be possible. Furthermore, it is found that high values of the cross-helicity may have an asymmetric effect on forward and reverse transfer of energy, where forward transfer is more quenched in regions of high cross-helicity than reverse transfer. This conforms with recent observations of solar wind turbulence. For specific helical interactions the relation to dynamo action is established. The present analysis provides new theoretical insights into physical processes where inverse cascade and dynamo action are involved, such as the evolution of cosmological and astrophysical magnetic fields and laboratory plasmas.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1432
Author(s):  
Dmitry O. Chernyshov ◽  
Andrei E. Egorov ◽  
Vladimir A. Dogiel ◽  
Alexei V. Ivlev

Recent observations of gamma rays with the Fermi Large Area Telescope (LAT) in the direction of the inner galaxy revealed a mysterious excess of GeV. Its intensity is significantly above predictions of the standard model of cosmic rays (CRs) generation and propagation with a peak in the spectrum around a few GeV. Popular interpretations of this excess are that it is due to either spherically distributed annihilating dark matter (DM) or an abnormal population of millisecond pulsars. We suggest an alternative explanation of the excess through the CR interactions with molecular clouds in the Galactic Center (GC) region. We assumed that the excess could be imitated by the emission of molecular clouds with depleted density of CRs with energies below ∼10 GeV inside. A novelty of our work is in detailed elaboration of the depletion mechanism of CRs with the mentioned energies through the “barrier” near the cloud edge formed by the self-excited MHD turbulence. This depletion of CRs inside the clouds may be a reason for the deficit of gamma rays from the Central Molecular Zone (CMZ) at energies below a few GeV. This in turn changes the ratio between various emission components at those energies and may potentially absorb the GeV excess by a simple renormalization of key components.


Sign in / Sign up

Export Citation Format

Share Document