scholarly journals Tunable Spin-Polarized Edge Currents in Proximitized Transition Metal Dichalcogenides

2019 ◽  
Vol 122 (8) ◽  
Author(s):  
Natalia Cortés ◽  
O. Ávalos-Ovando ◽  
L. Rosales ◽  
P. A. Orellana ◽  
S. E. Ulloa
2021 ◽  
Vol 2015 (1) ◽  
pp. 012142
Author(s):  
Ivan Sinev ◽  
Mengyao Li ◽  
Fedor Benimetskiy ◽  
Tatiana Ivanova ◽  
Svetlana Kiriushechkina ◽  
...  

Abstract Strong light-matter interactions enable unique nonlinear and quantum phenomena at moderate light intensities. Within the last years, polaritonic metasurfaces emerged as a viable candidate for realization of such regimes. In particular, planar photonic structures integrated with 2D excitonic materials, such as transition metal dichalcogenides (TMD), can support exciton polaritons – half-light half-matter quasiparticles. Here, we explore topological exciton polaritons which are formed in a suitably engineered all-dielectric topological photonic metasurface coupled to TMD monolayers. We experimentally demonstrate the transition of topological charge from photonic to polaritonic bands with the onset of strong coupling regime and confirm the presence of one-way spin-polarized edge topological polaritons. The proposed system constitutes a promising platform for photonic/solid-state interfaces for valleytronics and spintronics.


2016 ◽  
Vol 113 (14) ◽  
pp. 3746-3750 ◽  
Author(s):  
Lu Xie ◽  
Xiaodong Cui

Manipulating spin polarization of electrons in nonmagnetic semiconductors by means of electric fields or optical fields is an essential theme of the conceptual nonmagnetic semiconductor-based spintronics. Here we experimentally demonstrate an electric method of detecting spin polarization in monolayer transition metal dichalcogenides (TMDs) generated by circularly polarized optical pumping. The spin-polarized photocurrent is achieved through the valley-dependent optical selection rules and the spin–valley locking in monolayer WS2, and electrically detected by a lateral spin–valve structure with ferromagnetic contacts. The demonstrated long spin–valley lifetime, the unique valley-contrasted physics, and the spin–valley locking make monolayer WS2 an unprecedented candidate for semiconductor-based spintronics.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Masaki Kondo ◽  
Masayuki Ochi ◽  
Tatsuhiro Kojima ◽  
Ryosuke Kurihara ◽  
Daiki Sekine ◽  
...  

AbstractIn non-centrosymmetric metals, spin-orbit coupling induces momentum-dependent spin polarization at the Fermi surfaces. This is exemplified by the valley-contrasting spin polarization in monolayer transition metal dichalcogenides with in-plane inversion asymmetry. However, the valley configuration of massive Dirac fermions in transition metal dichalcogenides is fixed by the graphene-like structure, which limits the variety of spin-valley coupling. Here, we show that the layered polar metal BaMnX2 (X = Bi, Sb) hosts tunable spin-valley-coupled Dirac fermions, which originate from the distorted X square net with in-plane lattice polarization. We found that BaMnBi2 has approximately one-tenth the lattice distortion of BaMnSb2, from which a different configuration of spin-polarized Dirac valleys is theoretically predicted. This was experimentally observed as a clear difference in the Shubnikov-de Haas oscillation at high fields between the two materials. The chemically tunable spin-valley coupling in BaMnX2 makes it a promising material for various spin-valleytronic devices.


ACS Nano ◽  
2021 ◽  
Author(s):  
Miao Zhang ◽  
Martina Lihter ◽  
Tzu-Heng Chen ◽  
Michal Macha ◽  
Archith Rayabharam ◽  
...  

Author(s):  
Yoobeen Lee ◽  
Jin Won Jung ◽  
Jin Seok Lee

The reduction of intrinsic defects, including vacancies and grain boundaries, remains one of the greatest challenges to produce high-performance transition metal dichalcogenides (TMDCs) electronic systems. A deeper comprehension of the...


Sign in / Sign up

Export Citation Format

Share Document