Solid-Density Ion Temperature from Redshifted and Double-Peaked Stark Line Shapes

2021 ◽  
Vol 127 (20) ◽  
Author(s):  
B. F. Kraus ◽  
Lan Gao ◽  
K. W. Hill ◽  
M. Bitter ◽  
P. C. Efthimion ◽  
...  
2002 ◽  
Vol 715 ◽  
Author(s):  
T. Su ◽  
Robin Plachy ◽  
P. C. Taylor ◽  
S. Stone ◽  
G. Ganguly ◽  
...  

AbstractWe study the H NMR line shapes of a sample of a-Si:H under several conditions: 1) as grown, 2) light-soaked for 600 hours, and 3) light-soaked followed by annealing at different temperatures. At T = 7 K, the NMR line shape of the sample after light soaking exhibits an additional doublet compared to that of the sample as-grown. This doublet is an indication of a closely separated hydrogen pair. The distance between the two hydrogen atoms is estimated to be about (2.3 ± 0.2) Å. The concentration of these hydrogen sites is estimated to be between 1017 and 1018 cm-3 consistent with ESR measurements of the defect density after light soaking. This doublet disappears after the sample is annealed at 200°C for 4 hours.


1997 ◽  
Vol 62 (11) ◽  
pp. 1698-1709
Author(s):  
Miloslav Hartman ◽  
Zdeněk Beran ◽  
Václav Veselý ◽  
Karel Svoboda

The onset of the aggregative mode of liquid-solid fluidization was explored. The experimental findings were interpreted by means of the dynamic (elastic) wave velocity and the voidage propagation (continuity) wave velocity. For widely different systems, the mapping of regimes has been presented in terms of the Archimedes number, the Froude number and the fluid-solid density ratio. The proposed diagram also depicts the typical Geldart's Group A particles fluidized with air.


1997 ◽  
Vol 478 (1) ◽  
pp. 374-380 ◽  
Author(s):  
Artie P. Hatzes ◽  
William D. Cochran ◽  
Christopher M. Johns‐Krull
Keyword(s):  

1984 ◽  
Vol 86 ◽  
pp. 124-124
Author(s):  
T.J. McIlrath ◽  
V. Kaufman ◽  
J. Sugar ◽  
W.T. Hill ◽  
D. Cooper

Rapid ionization of Cs vapor in a heat pipe at 0.05 torr was achieved by pumping the 6s 2S½ – 7p 2P½ transition (f=0.007)1 with a flash-pumped dye laser at 4593.2A and I MW power output. Photoabsorptian initiated at the end of the laser pulse(≃ 0.5/s) showed the 5p5ns and nd series below and above the 5p52P3/2 threshold at 535.4A. Broad Beutler - Fano resonances appeared in the d series above threshold. The spectrum was recorded photographically on a 10.7m grazing incidence spectrograph using a continuum background generated by a BRV high-voltage spark source with a uranium anode. We will compare the line-shapes and the quantum defect (Lu-Fano2) plot with the predictions of a relativistic random phase calculation.


2004 ◽  
Vol 76 (1) ◽  
pp. 147-155 ◽  
Author(s):  
M. Musso ◽  
F. Matthai ◽  
D. Keutel ◽  
K.-L. Oehme

Isotropic Raman line shapes of simple molecular fluids exhibit critical line broadening near their respective liquid-gas critical points. In order to observe this phenomenon, it is essential that the band position of a given vibrational mode is density-dependent, and that vibrational depopulation processes negligibly contribute to line broadening. Special attention was given to the fact that the isotropic (i.e., nonrotationally broadened) line shape of liquid N2 is affected by resonant intermolecular vibrational interactions between identical oscillators. By means of the well-chosen isotopic mixture (14N2).975 - (14N15N).025, the temperature and density dependences of shift, width, and asymmetry of the resonantly coupled 14N2 and, depending on the S/N ratio available, of the resonantly uncoupled 14N15N were determined, with up to milli-Kelvin resolution, in the coexisting liquid and gas phases and along the critical isochore, using a highest-resolution double monochromator and modern charge-coupled device detection techniques. Clear evidence was found that vibrational resonance couplings are present in all dense phases studied.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 176
Author(s):  
Valery Astapenko ◽  
Andrei Letunov ◽  
Valery Lisitsa

The effect of plasma Coulomb microfied dynamics on spectral line shapes is under consideration. The analytical solution of the problem is unachievable with famous Chandrasekhar–Von-Neumann results up to the present time. The alternative methods are connected with modeling of a real ion Coulomb field dynamics by approximate models. One of the most accurate theories of ions dynamics effect on line shapes in plasmas is the Frequency Fluctuation Model (FFM) tested by the comparison with plasma microfield numerical simulations. The goal of the present paper is to make a detailed comparison of the FFM results with analytical ones for the linear and quadratic Stark effects in different limiting cases. The main problem is connected with perturbation additions laws known to be vector for small particle velocities (static line shapes) and scalar for large velocities (the impact limit). The general solutions for line shapes known in the frame of scalar perturbation additions are used to test the FFM procedure. The difference between “scalar” and “vector” models is demonstrated both for linear and quadratic Stark effects. It is shown that correct transition from static to impact limits for linear Stark-effect needs in account of the dependence of electric field jumping frequency in FFM on the field strengths. However, the constant jumping frequency is quite satisfactory for description of the quadratic Stark-effect. The detailed numerical comparison for spectral line shapes in the frame of both scalar and vector perturbation additions with and without jumping frequency field dependence for the linear and quadratic Stark effects is presented.


Sign in / Sign up

Export Citation Format

Share Document