Coupling of morphological instability and kinetic instability: Chemical waves in hydrogen oxidation on a bimetallic Ni/Rh(111) surface

2021 ◽  
Vol 5 (4) ◽  
Author(s):  
Mathias Homann ◽  
Bernhard von Boehn ◽  
Mauricio Prieto ◽  
Daniel M. Gottlob ◽  
Liviu C. Tănase ◽  
...  
The Analyst ◽  
2020 ◽  
Vol 145 (1) ◽  
pp. 122-131 ◽  
Author(s):  
Wanda V. Fernandez ◽  
Rocío T. Tosello ◽  
José L. Fernández

Gas diffusion electrodes based on nanoporous alumina membranes electrocatalyze hydrogen oxidation at high diffusion-limiting current densities with fast response times.


1996 ◽  
Vol 451 ◽  
Author(s):  
T. P. Moffat

ABSTRACTA variety of Cu/(Ni, Co) multilayers have been grown on Cu single crystals by pulse plating from an alloy electroplating bath. Copper is deposited under mass transport control while the iron group metal is deposited under interfacial charge transfer control. The structural evolution of these films is influenced by the morphological instability of the mass transport limited copper deposition reaction and the development of growth twins during iron-group metal deposition. Specular films have been obtained for growth on Cu(100) while rough, defective films were typically obtained for growth on Cu(111) and Cu(110).


2012 ◽  
Vol 48 (3) ◽  
pp. 257 ◽  
Author(s):  
Benfu HU ◽  
Guoquan LIU ◽  
Kai WU ◽  
Gaofeng TIAN

2021 ◽  
Vol 362 ◽  
pp. 115565
Author(s):  
R.A. Budiman ◽  
T. Ishiyama ◽  
K.D. Bagarinao ◽  
H. Kishimoto ◽  
K. Yamaji ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
P. Winkler ◽  
J. Zeininger ◽  
Y. Suchorski ◽  
M. Stöger-Pollach ◽  
P. Zeller ◽  
...  

AbstractScanning photoelectron microscopy (SPEM) and photoemission electron microscopy (PEEM) allow local surface analysis and visualising ongoing reactions on a µm-scale. These two spatio-temporal imaging methods are applied to polycrystalline Rh, representing a library of well-defined high-Miller-index surface structures. The combination of these techniques enables revealing the anisotropy of surface oxidation, as well as its effect on catalytic hydrogen oxidation. In the present work we observe, using locally-resolved SPEM, structure-sensitive surface oxide formation, which is summarised in an oxidation map and quantitatively explained by the novel step density (SDP) and step edge (SEP) parameters. In situ PEEM imaging of ongoing H2 oxidation allows a direct comparison of the local reactivity of metallic and oxidised Rh surfaces for the very same different stepped surface structures, demonstrating the effect of Rh surface oxides. Employing the velocity of propagating reaction fronts as indicator of surface reactivity, we observe a high transient activity of Rh surface oxide in H2 oxidation. The corresponding velocity map reveals the structure-dependence of such activity, representing a direct imaging of a structure-activity relation for plenty of well-defined surface structures within one sample.


2021 ◽  
Vol 70 ◽  
pp. 196-202
Author(s):  
S. Bukhari ◽  
Syed Raza Ali Raza ◽  
S. Ali

Sign in / Sign up

Export Citation Format

Share Document