scholarly journals General-purpose neural network interatomic potential for the α -iron and hydrogen binary system: Toward atomic-scale understanding of hydrogen embrittlement

2021 ◽  
Vol 5 (11) ◽  
Author(s):  
Fan-Shun Meng ◽  
Jun-Ping Du ◽  
Shuhei Shinzato ◽  
Hideki Mori ◽  
Peijun Yu ◽  
...  
2021 ◽  
Author(s):  
Yi-Shen Lin ◽  
G. Purja Pun ◽  
Yuri Mishin

Abstract Large-scale atomistic simulations of materials heavily rely on interatomic potentials, which predict the system energy and atomic forces. One of the recent developments in the field is constructing interatomic potentials by machine-learning (ML) methods. ML potentials predict the energy and forces by numerical interpolation using a large reference database generated by quantum-mechanical calculations. While high accuracy of interpolation can be achieved, extrapolation to unknown atomic environments is unpredictable. The recently proposed physically-informed neural network (PINN) model significantly improves the transferability by combining a neural network regression with a physics-based bond-order interatomic potential. Here, we demonstrate that general-purpose PINN potentials can be developed for body-centered cubic (BCC) metals. The proposed PINN potential for tantalum reproduces the reference energies within 2.8 meV/atom. It accurately predicts a broad spectrum of physical properties of Ta, including (but not limited to) lattice dynamics, thermal expansion, energies of point and extended defects, the dislocation core structure and the Peierls barrier, the melting temperature, the structure of liquid Ta, and the liquid surface tension. The potential enables large-scale simulations of physical and mechanical behavior of Ta with nearly first-principles accuracy while being orders of magnitude faster. This approach can be readily extended to other BCC metals.


Author(s):  
Stephen T. Lam ◽  
Qing-Jie Li ◽  
Ronald Ballinger ◽  
Charles Forsberg ◽  
Ju Li

2020 ◽  
Author(s):  
Brian Q. Geuther ◽  
Asaf Peer ◽  
Hao He ◽  
Gautam Sabnis ◽  
Vivek M. Philip ◽  
...  

AbstractAutomated detection of complex animal behaviors remains a challenging problem in neuroscience, particularly for behaviors that consist of disparate sequential motions. Grooming, a prototypical stereotyped behavior, is often used as an endophenotype in psychiatric genetics. Using mouse grooming behavior as an example, we develop a general purpose neural network architecture capable of dynamic action detection at human observer-level performance and operate across dozens of mouse strains with high visual diversity. We provide insights into the amount of human annotated training data that are needed to achieve such performance. We survey grooming behavior in the open field in 2500 mice across 62 strains, determine its heritable components, conduct GWAS to outline its genetic architecture, and perform PheWAS to link human psychiatric traits through shared underlying genetics. Our general machine learning solution that automatically classifies complex behaviors in large datasets will facilitate systematic studies of mechanisms underlying these behaviors.


2021 ◽  
Author(s):  
Yash Chauhan ◽  
Prateek Singh

Coins recognition systems have humungous applications from vending and slot machines to banking and management firms which directly translate to a high volume of research regarding the development of methods for such classification. In recent years, academic research has shifted towards a computer vision approach for sorting coins due to the advancement in the field of deep learning. However, most of the documented work utilizes what is known as ‘Transfer Learning’ in which we reuse a pre-trained model of a fixed architecture as a starting point for our training. While such an approach saves us a lot of time and effort, the generic nature of the pre-trained model can often become a bottleneck for performance on a specialized problem such as coin classification. This study develops a convolutional neural network (CNN) model from scratch and tests it against a widely-used general-purpose architecture known as Googlenet. We have shown in this study by comparing the performance of our model with that of Googlenet (documented in various previous studies) that a more straightforward and specialized architecture is more optimal than a more complex general architecture for the coin classification problem. The model developed in this study is trained and tested on 720 and 180 images of Indian coins of different denominations, respectively. The final accuracy gained by the model is 91.62% on the training data, while the accuracy is 90.55% on the validation data.


2022 ◽  
pp. 350-374
Author(s):  
Mudassir Ismail ◽  
Ahmed Abdul Majeed ◽  
Yousif Abdullatif Albastaki

Machine odor detection has developed into an important aspect of our lives with various applications of it. From detecting food spoilage to diagnosis of diseases, it has been developed and tested in various fields and industries for specific purposes. This project, artificial-neural-network-based electronic nose (ANNeNose), is a machine-learning-based e-nose system that has been developed for detection of various types of odors for a general purpose. The system can be trained on any odor using various e-nose sensor types. It uses artificial neural network as its machine learning algorithm along with an OMX-GR semiconductor gas sensor for collecting odor data. The system was trained and tested with five different types of odors collected through a standard data collection method and then purified, which in turn had a result varying from 93% to 100% accuracy.


Sign in / Sign up

Export Citation Format

Share Document