scholarly journals Optical beam transport to a remote location for low jitter pump-probe experiments with a free electron laser

Author(s):  
P. Cinquegrana ◽  
S. Cleva ◽  
A. Demidovich ◽  
G. Gaio ◽  
R. Ivanov ◽  
...  

2021 ◽  
Vol 6 (5) ◽  
pp. 054401
Author(s):  
Z. Chen ◽  
X. Na ◽  
C. B. Curry ◽  
S. Liang ◽  
M. French ◽  
...  


Author(s):  
Zhen Zhang ◽  
Joseph Duris ◽  
James P. MacArthur ◽  
Zhirong Huang ◽  
Agostino Marinelli




2019 ◽  
Vol 9 (12) ◽  
pp. 2447 ◽  
Author(s):  
Driss Oumbarek Espinos ◽  
Amin Ghaith ◽  
Thomas André ◽  
Charles Kitégi ◽  
Mourad Sebdaoui ◽  
...  

Laser plasma acceleration (LPA) capable of providing femtosecond and GeV electron beams in cm scale distances brings a high interest for different applications, such as free electron laser and future colliders. Nevertheless, LPA high divergence and energy spread require an initial strong focus to mitigate the chromatic effects. The reliability, in particular with the pointing fluctuations, sets a real challenge for the control of the dispersion along the electron beam transport. We examine here how the magnetic defects of the first strong quadrupoles, in particular, the skew terms, can affect the brightness of the transported electron beam, in the case of the COXINEL transport line, designed for manipulating the electron beam properties for a free electron laser application. We also show that the higher the initial beam divergence, the larger the degradation. Experimentally, after having implemented a beam pointing alignment compensation method enabling us to adjust the position and dispersion independently, we demonstrate that the presence of non-negligible skew quadrupolar components induces a transversal spread and tilt of the beam, leading to an emittance growth and brightness reduction. We are able to reproduce the measurements with beam transport simulations using the measured electron beam parameters.



2020 ◽  
Vol 10 (21) ◽  
pp. 7852
Author(s):  
Hiroshi Iwayama ◽  
Masanari Nagasaka ◽  
Ichiro Inoue ◽  
Shigeki Owada ◽  
Makina Yabashi ◽  
...  

We demonstrate the applicability of third- and fifth-order harmonics of free-electron laser (FEL) radiation for soft X-ray absorption spectroscopy in the transmission mode at SACLA BL1, which covers a photon energy range of 20 to 150 eV in the fundamental FEL radiation. By using the third- and fifth-order harmonics of the FEL radiation, we successfully recorded near-edge X-ray absorption fine structure (NEXAFS) spectra for Ar 2p core ionization and CO2 C 1s and O 1s core ionizations. Our results show that the utilization of third- and fifth-order harmonics can significantly extend the available photon energies for NEXAFS spectroscopy using an FEL and opens the door to femtosecond pump-probe NEXAFS using a soft X-ray FEL.





2010 ◽  
Vol 12 (7) ◽  
pp. 075002 ◽  
Author(s):  
E Allaria ◽  
C Callegari ◽  
D Cocco ◽  
W M Fawley ◽  
M Kiskinova ◽  
...  


2013 ◽  
Vol 4 (1) ◽  
Author(s):  
E. Allaria ◽  
F. Bencivenga ◽  
R. Borghes ◽  
F. Capotondi ◽  
D. Castronovo ◽  
...  


2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Martin Dommach ◽  
Massimiliano Di Felice ◽  
Bianca Dickert ◽  
Denis Finze ◽  
Janni Eidam ◽  
...  

The photon beamline vacuum system of the European X-ray Free-Electron Laser Facility (European XFEL) is described. The ultra-large, in total more than 3 km-long, fan-like vacuum system, consisting of three photon beamlines is an essential part of the photon beam transport. It is located between the accelerator vacuum system and the scientific instruments. The main focus of the design was on the efficiency, reliability and robustness of the entire system to ensure the retention of beam properties and the operation of the X-ray optics and X-ray photon diagnostics components. Installation started in late 2014, the first of the three beamline vacuum systems was commissioned in spring 2017, and the last one was operational in mid-2018. The present state and experience from the first years of operation are outlined.



Sign in / Sign up

Export Citation Format

Share Document