scholarly journals The FERMI@Elettra free-electron-laser source for coherent x-ray physics: photon properties, beam transport system and applications

2010 ◽  
Vol 12 (7) ◽  
pp. 075002 ◽  
Author(s):  
E Allaria ◽  
C Callegari ◽  
D Cocco ◽  
W M Fawley ◽  
M Kiskinova ◽  
...  
2007 ◽  
Vol 22 (23) ◽  
pp. 4270-4279
Author(s):  
A. BACCI ◽  
C. MAROLI ◽  
V. PETRILLO ◽  
L. SERAFNI ◽  
M. FERRARIO

The interaction between high-brilliance electron beams and counter-propagating laser pulses produces X rays via Thomson back-scattering. If the laser source is long and intense enough, the electrons of the beam can bunch and a regime of collective effects can establish. In this case of dominating collective effects, the FEL instability can develop and the system behaves like a free-electron laser based on an optical undulator. Coherent X-rays can be irradiated, with a bandwidth very much thinner than that of the corresponding incoherent emission. The emittance of the electron beam and the distribution of the laser energy are the principal quantities that limit the growth of the X-ray signal. In this work we analyse with a 3-D code the transverse effects in the emission produced by a relativistic electron beam when it is under the action of an optical laser pulse and the X-ray spectra obtained. The scalings typical of the optical wiggler, characterized by very short gain lengths and overall time durations of the process make possible considerable emission also with emittance of the order of 1mm mrad.


2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Martin Dommach ◽  
Massimiliano Di Felice ◽  
Bianca Dickert ◽  
Denis Finze ◽  
Janni Eidam ◽  
...  

The photon beamline vacuum system of the European X-ray Free-Electron Laser Facility (European XFEL) is described. The ultra-large, in total more than 3 km-long, fan-like vacuum system, consisting of three photon beamlines is an essential part of the photon beam transport. It is located between the accelerator vacuum system and the scientific instruments. The main focus of the design was on the efficiency, reliability and robustness of the entire system to ensure the retention of beam properties and the operation of the X-ray optics and X-ray photon diagnostics components. Installation started in late 2014, the first of the three beamline vacuum systems was commissioned in spring 2017, and the last one was operational in mid-2018. The present state and experience from the first years of operation are outlined.


2020 ◽  
Vol 10 (8) ◽  
pp. 2728 ◽  
Author(s):  
Svitozar Serkez ◽  
Winfried Decking ◽  
Lars Froehlich ◽  
Natalia Gerasimova ◽  
Jan Grünert ◽  
...  

X-ray pump/X-ray probe applications are made possible at X-ray Free Electron Laser (XFEL) facilities by generating two X-ray pulses with different wavelengths and controllable temporal delay. In order to enable this capability at the European XFEL, an upgrade project to equip the soft X-ray SASE3 beamline with a magnetic chicane is underway. In the present paper we describe the status of the project, its scientific focus and expected performance, including start-to-end simulations of the photon beam transport up to the sample, as well as recent experimental results demonstrating two-color lasing at photon energies of 805 eV + 835 eV and 910 eV + 950 eV. Additionally, we discuss methods to analyze the spectral properties and the intensity of the generated radiation to provide on-line diagnostics for future user experiments.


2016 ◽  
Vol 194 ◽  
pp. 639-658 ◽  
Author(s):  
Lin X. Chen ◽  
Megan L. Shelby ◽  
Patrick J. Lestrange ◽  
Nicholas E. Jackson ◽  
Kristoffer Haldrup ◽  
...  

This report will describe our recent studies of transition metal complex structural dynamics on the fs and ps time scales using an X-ray free electron laser source, Linac Coherent Light Source (LCLS). Ultrafast XANES spectra at the Ni K-edge of nickel(ii) tetramesitylporphyrin (NiTMP) were measured for optically excited states at a timescale from 100 fs to 50 ps, providing insight into its sub-ps electronic and structural relaxation processes. Importantly, a transient reduced state Ni(i) (π, 3dx2−y2) electronic state is captured through the interpretation of a short-lived excited state absorption on the low-energy shoulder of the edge, which is aided by the computation of X-ray transitions for postulated excited electronic states. The observed and computed inner shell to valence orbital transition energies demonstrate and quantify the influence of the electronic configuration on specific metal orbital energies. A strong influence of the valence orbital occupation on the inner shell orbital energies indicates that one should not use the transition energy from 1s to other orbitals to draw conclusions about the d-orbital energies. For photocatalysis, a transient electronic configuration could influence d-orbital energies up to a few eV and any attempt to steer the reaction pathway should account for this to ensure that external energies can be used optimally in driving desirable processes. NiTMP structural evolution and the influence of the porphyrin macrocycle conformation on relaxation kinetics can be likewise inferred from this study.


2020 ◽  
Vol 86 (6) ◽  
Author(s):  
G. Dattoli ◽  
S. Di Mitri ◽  
F. Nguyen ◽  
A. Petralia

Self-amplified spontaneous emission (SASE) free electron laser (FEL) devices have disclosed an unexpected interplay between the laser intensity growth and regions of the electron bunch of the order of the coherence length. They are usually identified with the bunch slice and contribute to the laser dynamics with their own characteristics. The dynamical effects inducing geometrical and phase space misalignment of bunch slice in X-ray operating FELs can be traced back to a plethora of phenomena, both in the Linac accelerating section or inside the beam transport optic magnet. They are responsible for spoiling of the beam projected qualities and, if not corrected properly, induce an increase of the saturation length and a decreasing of the output power. We discuss the inclusion of these effects in models employing scaling formulae.


2019 ◽  
Vol 26 (5) ◽  
pp. 1422-1431 ◽  
Author(s):  
Jan Grünert ◽  
Marc Planas Carbonell ◽  
Florian Dietrich ◽  
Torben Falk ◽  
Wolfgang Freund ◽  
...  

The European X-ray Free-Electron Laser (European XFEL) (Altarelli et al., 2006; Tschentscher et al., 2017), the world's largest and brightest X-ray free-electron laser (Saldin et al., 1999; Pellegrini et al., 2016), went into operation in 2017. This article describes the as-built realization of photon diagnostics for this facility, the diagnostics commissioning and their application for commissioning of the facility, and results from the first year of operation, focusing on the SASE1 beamline, which was the first to be commissioned. The commissioning consisted of pre-beam checkout, first light from the bending magnets, X-rays from single undulator segments, SASE tuning with many undulator segments, first lasing, optics alignment for FEL beam transport through the tunnel up to the experiment hutches, and finally beam delivery to first users. The beam properties assessed by photon diagnostics throughout these phases included per-pulse intensity, beam position, shape, lateral dimensions and spectral properties. During this time period, the machine provided users with up to 14 keV photon energy, 1.5 mJ pulse energy, 300 FEL pulses per train and 4.5 MHz intra-bunch train repetition rate at a 10 Hz train repetition rate. Finally, an outlook is given into the diagnostic prospects for the future.


2020 ◽  
Vol 117 (39) ◽  
pp. 24110-24116 ◽  
Author(s):  
Felix Lehmkühler ◽  
Francesco Dallari ◽  
Avni Jain ◽  
Marcin Sikorski ◽  
Johannes Möller ◽  
...  

Dynamics and kinetics in soft matter physics, biology, and nanoscience frequently occur on fast (sub)microsecond but not ultrafast timescales which are difficult to probe experimentally. The European X-ray Free-Electron Laser (European XFEL), a megahertz hard X-ray Free-Electron Laser source, enables such experiments via taking series of diffraction patterns at repetition rates of up to 4.5 MHz. Here, we demonstrate X-ray photon correlation spectroscopy (XPCS) with submicrosecond time resolution of soft matter samples at the European XFEL. We show that the XFEL driven by a superconducting accelerator provides unprecedented beam stability within a pulse train. We performed microsecond sequential XPCS experiments probing equilibrium and nonequilibrium diffusion dynamics in water. We find nonlinear heating on microsecond timescales with dynamics beyond hot Brownian motion and superheated water states persisting up to 100 μs at high fluences. At short times up to 20 μs we observe that the dynamics do not obey the Stokes–Einstein predictions.


2012 ◽  
Vol 20 (7) ◽  
pp. 8006 ◽  
Author(s):  
Alain Jody Corso ◽  
Paola Zuppella ◽  
David L. Windt ◽  
Marco Zangrando ◽  
Maria Guglielmina Pelizzo

2011 ◽  
Vol 131 (2) ◽  
pp. 68-71
Author(s):  
Etsuo FUJIWARA ◽  
Eiichi ANAYAMA ◽  
Yuichiro KATSUTA ◽  
Toshiki IZUTANI ◽  
Daichi OKUHARA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document