scholarly journals Salicylic Acid Has Cell-Specific Effects on Tobacco mosaic virus Replication and Cell-to-Cell Movement

2002 ◽  
Vol 128 (2) ◽  
pp. 552-563 ◽  
Author(s):  
Alex M. Murphy ◽  
John P. Carr
1997 ◽  
Vol 9 (4) ◽  
pp. 547 ◽  
Author(s):  
Stephen Chivasa ◽  
Alex M. Murphy ◽  
Martin Naylor ◽  
John P. Carr

2004 ◽  
Vol 17 (6) ◽  
pp. 583-592 ◽  
Author(s):  
Xin Shun Ding ◽  
Jianzhong Liu ◽  
Ning-Hui Cheng ◽  
Alexey Folimonov ◽  
Yu-Ming Hou ◽  
...  

Systemic symptoms induced on Nicotiana tabacum cv. Xanthi by Tobacco mosaic virus (TMV) are modulated by one or both amino-coterminal viral 126- and 183-kDa proteins: proteins involved in virus replication and cell-to-cell movement. Here we compare the systemic accumulation and gene silencing characteristics of TMV strains and mutants that express altered 126- and 183-kDa proteins and induce varying intensities of systemic symptoms on N. tabacum. Through grafting experiments, it was determined that MIC1,3, a mutant of the masked strain of TMV that accumulated locally and induced no systemic symptoms, moved through vascular tissue but failed to accumulate to high levels in systemic leaves. The lack of MIC1,3 accumulation in systemic leaves was correlated with RNA silencing activity in this tissue through the appearance of virus-specific, approximately 25-nucleotide RNAs and the loss of fluorescence from leaves of transgenic plants expressing the 126-kDa protein fused with green fluorescent protein (GFP). The ability of TMV strains and mutants altered in the 126-kDa protein open reading frame to cause systemic symptoms was positively correlated with their ability to transiently extend expression of the 126-kDa protein:GFP fusion and transiently suppress the silencing of free GFP in transgenic N. tabacum and transgenic N. benthamiana, respectively. Suppression of GFP silencing in N. benthamiana occurred only where virus accumulated to high levels. Using agro-infiltration assays, it was determined that the 126-kDa protein alone could delay GFP silencing. Based on these results and the known synergies between TMV and other viruses, the mechanism of suppression by the 126-kDa protein is compared with those utilized by other originally characterized suppressors of RNA silencing.


1999 ◽  
Vol 354 (1383) ◽  
pp. 637-643 ◽  
Author(s):  
Vitaly Citovsky

Cell–to–cell movement of tobacco mosaic virus (TMV) is used to illustrate macromolecular traffic through plant intercellular connections, the plasmodesmata. This transport process is mediated by a specialized viral movement protein, P30. In the initially infected cell, P30 is produced by transcription of a subgenomic RNA derived from the invading virus. Presumably, P30 then associates with a certain proportion of the viral RNA molecules, sequestering them from replication and mediating their transport into neighbouring uninfected host cells. This nucleoprotein complex is targeted to plasmodesmata, possibly via interaction with the host cell cytoskeleton. Prior to passage through a plasmodesma, the plasmodesmal channel is dilated by the movement protein. It is proposed that targeting of P30–TMV RNA complexes to plasmodesmata involves binding to a specific cell wall–associated receptor molecule. In addition, a cell wall–associated protein kinase, phosphorylates P30 at its carboxy–terminus and minimizes P30–induced interference with plasmodesmatal permeability during viral infection.


2003 ◽  
Vol 77 (6) ◽  
pp. 3549-3556 ◽  
Author(s):  
Sameer P. Goregaoker ◽  
James N. Culver

ABSTRACT A protein-protein interaction within the helicase domain of the Tobacco mosaic virus (TMV) 126- and 183-kDa replicase proteins was previously implicated in virus replication (S. Goregaoker, D. Lewandowski, and J. Culver, Virology 282:320-328, 2001). To further characterize the interaction, polypeptides covering the interacting portions of the TMV helicase domain were expressed and purified. Biochemical characterizations demonstrated that the helicase domain polypeptides hydrolyzed ATP and bound both single-stranded and duplexed RNA in an ATP-controlled fashion. A TMV helicase polypeptide also was capable of unwinding duplexed RNA, confirming the predicted helicase function of the domain. Biochemically active helicase polypeptides were shown by gel filtration to form high-molecular-weight complexes. Electron microscopy studies revealed the presence of ring-like oligomers that displayed six-sided symmetry. Taken together, these data demonstrate that the TMV helicase domain interacts with itself to produce hexamer-like oligomers. Within the context of the full-length 126- and 183-kDa proteins, these findings suggest that the TMV replicase may form a similar oligomer.


1987 ◽  
Vol 6 (9) ◽  
pp. 2557-2563 ◽  
Author(s):  
Tetsuo Meshi ◽  
Yuichiro Watanabe ◽  
Tetsuichiro Saito ◽  
Asako Sugimoto ◽  
Tatsuya Maeda ◽  
...  

2005 ◽  
Vol 79 (22) ◽  
pp. 14421-14428 ◽  
Author(s):  
Alexey I. Prokhnevsky ◽  
Valera V. Peremyslov ◽  
Valerian V. Dolja

ABSTRACT The cell-to-cell movement of plant viruses involves translocation of virus particles or nucleoproteins to and through the plasmodesmata (PDs). As we have shown previously, the movement of the Beet yellows virus requires the concerted action of five viral proteins including a homolog of cellular ∼70-kDa heat shock proteins (Hsp70h). Hsp70h is an integral component of the virus particles and is also found in PDs of the infected cells. Here we investigate subcellular distribution of Hsp70h using transient expression of Hsp70h fused to three spectrally distinct fluorescent proteins. We found that fluorophore-tagged Hsp70h forms motile granules that are associated with actin microfilaments, but not with microtubules. In addition, immobile granules were observed at the cell periphery. A pairwise appearance of these granules at the opposite sides of cell walls and their colocalization with the movement protein of Tobacco mosaic virus indicated an association of Hsp70h with PDs. Treatment with various cytoskeleton-specific drugs revealed that the intact actomyosin motility system is required for trafficking of Hsp70h in cytosol and its targeting to PDs. In contrast, none of the drugs interfered with the PD localization of Tobacco mosaic virus movement protein. Collectively, these findings suggest that Hsp70h is translocated and anchored to PDs in association with the actin cytoskeleton.


Sign in / Sign up

Export Citation Format

Share Document