scholarly journals The Transcription Factor MtSERF1 of the ERF Subfamily Identified by Transcriptional Profiling Is Required for Somatic Embryogenesis Induced by Auxin Plus Cytokinin in Medicago truncatula

2008 ◽  
Vol 146 (4) ◽  
pp. 1622-1636 ◽  
Author(s):  
Feky R. Mantiri ◽  
Sergey Kurdyukov ◽  
Dasharath P. Lohar ◽  
Natalya Sharopova ◽  
Nasir A. Saeed ◽  
...  
2019 ◽  
Vol 138 (3) ◽  
pp. 517-527 ◽  
Author(s):  
Varvara E. Tvorogova ◽  
Yulia A. Fedorova ◽  
Elina A. Potsenkovskaya ◽  
Andrei A. Kudriashov ◽  
Elena P. Efremova ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 715
Author(s):  
Aline Kadri ◽  
Ghislaine Grenier De March ◽  
François Guerineau ◽  
Viviane Cosson ◽  
Pascal Ratet

The induction of plant somatic embryogenesis is often a limiting step for plant multiplication and genetic manipulation in numerous crops. It depends on multiple signaling developmental processes involving phytohormones and the induction of specific genes. The WUSCHEL gene (WUS) is required for the production of plant embryogenic stem cells. To explore a different approach to induce somatic embryogenesis, we have investigated the effect of the heterologous ArabidopsisWUS gene overexpression under the control of the jasmonate responsive vsp1 promoter on the morphogenic responses of Medicago truncatula explants. WUS expression in leaf explants increased callogenesis and embryogenesis in the absence of growth regulators. Similarly, WUS expression enhanced the embryogenic potential of hairy root fragments. The WUS gene represents thus a promising tool to develop plant growth regulator-free regeneration systems or to improve regeneration and transformation efficiency in recalcitrant crops.


Plant Science ◽  
2018 ◽  
Vol 277 ◽  
pp. 121-131 ◽  
Author(s):  
Zheng Liu ◽  
Xiao-Xia Ge ◽  
Wen-Ming Qiu ◽  
Jian-Mei Long ◽  
Hui-Hui Jia ◽  
...  

BMC Genomics ◽  
2008 ◽  
Vol 9 (1) ◽  
pp. 607 ◽  
Author(s):  
Joshua D Bryan ◽  
Roxanne Liles ◽  
Urska Cvek ◽  
Marjan Trutschl ◽  
Daniel Shelver

2010 ◽  
pp. no-no ◽  
Author(s):  
Qiao Zhao ◽  
Lina Gallego-Giraldo ◽  
Huanzhong Wang ◽  
Yining Zeng ◽  
Shi-You Ding ◽  
...  

2019 ◽  
Vol 32 (12) ◽  
pp. 1614-1622 ◽  
Author(s):  
Jung-Gun Kim ◽  
Mary Beth Mudgett

Effector-dependent manipulation of host transcription is a key virulence mechanism used by Xanthomonas species causing bacterial spot disease in tomato and pepper. Transcription activator-like (TAL) effectors employ novel DNA-binding domains to directly activate host transcription, whereas the non-TAL effector XopD uses a small ubiquitin-like modifier (SUMO) protease activity to represses host transcription. The targets of TAL and non-TAL effectors provide insight to the genes governing susceptibility and resistance during Xanthomonas infection. In this study, we investigated the extent to which the X. euvesicatoria non-TAL effector strain Xe85-10 activates tomato transcription to gain new insight to the transcriptional circuits and virulence mechanisms associated with Xanthomonas euvesicatoria pathogenesis. Using transcriptional profiling, we identified a putative basic helix-loop-helix (bHLH) transcription factor, bHLH132, as a pathogen-responsive gene that is moderately induced by microbe-associated molecular patterns and defense hormones and is highly induced by XopD during X. euvesicatoria infection. We also found that activation of bHLH132 transcription requires the XopD SUMO protease activity. Silencing bHLH132 mRNA expression results in stunted tomato plants with enhanced susceptibility to X. euvesicatoria infection. Our work suggests that bHLH132 is required for normal vegetative growth and development as well as resistance to X. euvesicatoria. It also suggests new transcription-based models describing XopD virulence and recognition in tomato.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Renan Terassi Pinto ◽  
Natália Chagas Freitas ◽  
Wesley Pires Flausino Máximo ◽  
Thiago Bergamo Cardoso ◽  
Débora de Oliveira Prudente ◽  
...  

Abstract Background Coffee production relies on plantations with varieties from Coffea arabica and Coffea canephora species. The first, the most representative in terms of coffee consumption, is mostly propagated by seeds, which leads to management problems regarding the plantations maintenance, harvest and processing of grains. Therefore, an efficient clonal propagation process is required for this species cultivation, which is possible by reaching a scalable and cost-effective somatic embryogenesis protocol. A key process on somatic embryogenesis induction is the auxin homeostasis performed by Gretchen Hagen 3 (GH3) proteins through amino acid conjugation. In this study, the GH3 family members were identified on C. canephora genome, and by performing analysis related to gene and protein structure and transcriptomic profile on embryogenic tissues, we point a GH3 gene as a potential regulator of auxin homeostasis during early somatic embryogenesis in C. arabica plants. Results We have searched within the published C. canephora genome and found 17 GH3 family members. We checked the conserved domains for GH3 proteins and clustered the members in three main groups according to phylogenetic relationships. We identified amino acids sets in four GH3 proteins that are related to acidic amino acid conjugation to auxin, and using a transcription factor (TF) network approach followed by RT-qPCR we analyzed their possible transcriptional regulators and expression profiles in cells with contrasting embryogenic potential in C. arabica. The CaGH3.15 expression pattern is the most correlated with embryogenic potential and with CaBBM, a C. arabica ortholog of a major somatic embryogenesis regulator. Conclusion Therefore, one out of the GH3 members may be influencing on coffee somatic embryogenesis by auxin conjugation with acidic amino acids, which leads to the phytohormone degradation. It is an indicative that this gene can serve as a molecular marker for coffee cells with embryogenic potential and needs to be further studied on how much determinant it is for this process. This work, together with future studies, can support the improvement of coffee clonal propagation through in vitro derived somatic embryos.


2012 ◽  
Vol 146 (2) ◽  
pp. 236-249 ◽  
Author(s):  
André M. Almeida ◽  
José R. Parreira ◽  
Romana Santos ◽  
Ana Sofia Duque ◽  
Rita Francisco ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document