Overexpression of the CsFUS3 gene encoding a B3 transcription factor promotes somatic embryogenesis in Citrus

Plant Science ◽  
2018 ◽  
Vol 277 ◽  
pp. 121-131 ◽  
Author(s):  
Zheng Liu ◽  
Xiao-Xia Ge ◽  
Wen-Ming Qiu ◽  
Jian-Mei Long ◽  
Hui-Hui Jia ◽  
...  
2020 ◽  
Author(s):  
Seungwoo Cha ◽  
Chang Pyo Hong ◽  
Hyun Ah Kang ◽  
Ji-Sook Hahn

Abstract Gcr1, an important transcription factor for glycolytic genes in Saccharomyces cerevisiae, was recently revealed to have two isoforms, Gcr1U and Gcr1S, produced from un-spliced and spliced transcripts, respectively. In this study, by generating strains expressing only Gcr1U or Gcr1S using the CRISPR/Cas9 system, we elucidate differential activation mechanisms of these two isoforms. The Gcr1U monomer forms an active complex with its coactivator Gcr2 homodimer, whereas Gcr1S acts as a homodimer without Gcr2. The USS domain, 55 residues at the N-terminus existing only in Gcr1U, inhibits dimerization of Gcr1U and even acts in trans to inhibit Gcr1S dimerization. The Gcr1S monomer inhibits the metabolic switch from fermentation to respiration by directly binding to the ALD4 promoter, which can be restored by overexpression of the ALD4 gene, encoding a mitochondrial aldehyde dehydrogenase required for ethanol utilization. Gcr1U and Gcr1S regulate almost the same target genes, but show unique activities depending on growth phase, suggesting that these isoforms play differential roles through separate activation mechanisms depending on environmental conditions.


2000 ◽  
Vol 11 (1) ◽  
pp. 31-36 ◽  
Author(s):  
Irma S. Lantinga-van Leeuwen ◽  
Jan A. Mol ◽  
Hans S. Kooistra ◽  
Ad Rijnberk ◽  
Matthew Breen ◽  
...  

2009 ◽  
Vol 152 (1) ◽  
pp. 71-84 ◽  
Author(s):  
Ana-Rosa Ballester ◽  
Jos Molthoff ◽  
Ric de Vos ◽  
Bas te Lintel Hekkert ◽  
Diego Orzaez ◽  
...  

1991 ◽  
Vol 11 (9) ◽  
pp. 4642-4650 ◽  
Author(s):  
R Kuhn ◽  
E S Monuki ◽  
G Lemke

SCIP is a POU domain transcription factor expressed by glial progenitor cells in the peripheral and central nervous systems (dividing Schwann cells and O-2A cells, respectively), where it appears to act as a repressor of myelin-specific genes. We have isolated genomic clones encoding the rat SCIP gene. Comparison of the structure of these clones with genomic Southern blots and SCIP cDNAs demonstrates that SCIP is encoded in a single-copy, intronless gene that has the general features of an expressed retroposon. This gene contributes to an extended CpG island. It is transcribed to produce a 3.1-kb mRNA that encodes a 451-amino-acid protein with a predicted molecular mass of 45 kDa. Immunopurified SCIP antibodies specifically recognize a nuclear protein of this size in cultured proliferating Schwann cells, and gel shift analyses demonstrate that this protein is the predominant octamer-binding protein in these cells.


Genetics ◽  
2000 ◽  
Vol 154 (4) ◽  
pp. 1497-1508 ◽  
Author(s):  
Hiroko Abe ◽  
Chikashi Shimoda

Abstract The Schizosaccharomyces pombe mei4+ gene encoding a forkhead transcription factor is necessary for the progression of meiosis and sporulation. We searched for novel meiotic genes, the expression of which is dependent on Mei4p, since only the spo6+ gene has been assigned to its targets. Six known genes responsible for meiotic recombination were examined by Northern blotting, but none were Mei4 dependent for transcription. We determined the important cis-acting element, designated FLEX, to which Mei4p can bind. The S. pombe genome sequence database (The Sanger Centre, UK) was scanned for the central core heptamer and its flanking 3′ sequence of FLEX composed of 17 nucleotides, and 10 candidate targets of Mei4 were selected. These contained a FLEX-like sequence in the 5′ upstream nontranslatable region within 1 kb of the initiation codon. Northern blotting confirmed that 9 of them, named mde1+ to mde9+, were transcriptionally induced during meiosis and were dependent on mei4+. Most mde genes have not been genetically defined yet, except for mde9+, which is identical to spn5+, which encodes one of the septin family of proteins. mde3+ and a related gene pit1+ encode proteins related to Saccharomyces cerevisiae Ime2. The double disruptant frequently produced asci having an abnormal number and size of spores, although it completed meiosis. We also found that the forkhead DNA-binding domain of Mei4p binds to the FLEX-like element in the putative promoter region of mei4 and that the maximum induction level of mei4 mRNA required functional mei4 activity. Furthermore, expression of a reporter gene driven by the authentic mei4 promoter was induced in vegetative cells by ectopic overproduction of Mei4p. These results suggest that mei4 transcription is positively autoregulated.


2018 ◽  
Vol 23 (1) ◽  
pp. 89
Author(s):  
Augusta Yadira Cueva-Agila ◽  
Rino Cella

Protocorms are unique anatomical structures; they are akin to rhizoids and are formed by young orchid seedlings under physiological conditions. Explanted orchid tissues produce similar structures called protocorm-like bodies (PLBs) when exposed to appropriate <em>in vitro</em> growing conditions. Both the propagative nature of PLBs and the easiness by which they can be generated, make these structures an attractive alternative to seed-mediated production for growing large numbers of plants. To increase somatic embryogenesis and optimize the procedure, PLBs of <em>Cattleya maxima </em>were transformed<em> </em>using the <em>Agrobacterium tumefaciens </em>method. The T-DNA carried a Hygromycin-resistance gene, a visible marker (GFP5-GUSA) and a rice gene encoding the Somatic Embryogenesis Receptor Kinase, deemed to be important for somatic embryogenesis. Treated PLBs generated somatic embryos developing Hygromycin-resistant plantlets. The insertion of T-DNA was confirmed by PCR, and GFP expression was observed using a fluorescent stereomicroscope. Transformed <em>Cattleya maxima</em> PLBs were more efficient in forming somatic embryos (60-80%) than untransformed controls (45-57%), and this contrast was maximized in hormone-free, Murashige and Skoog (MS) medium (80% of the transformed plants compared to 57% of the untransformed ones). This finding supports the notion that SERK<em> </em>plays an important role in Orchid embryogenesis.


Genetics ◽  
1992 ◽  
Vol 131 (4) ◽  
pp. 895-903
Author(s):  
M A Mortin ◽  
R Zuerner ◽  
S Berger ◽  
B J Hamilton

Abstract Specific mutations in the gene encoding the largest subunit of RNA polymerase II (RpII215) cause a partial transformation of a structure of the third thoracic segment, the capitellum, into the analogous structure of the second thoracic segment, the wing. This mutant phenotype is also caused by genetically reducing the cellular concentration of the transcription factor Ultrabithorax (Ubx). To recover mutations in the 140,000-D second-largest subunit of RNA polymerase II (RpII140) and determine whether any can cause a mutant phenotype similar to Ubx we attempted to identify all recessive-lethal mutable loci in a 340-kilobase deletion including this and other loci. One of the 13 complementation groups in this region encodes RpII140. Three RpII140 alleles cause a transformation of capitellum to wing but unlike RpII215 alleles, only when the concentration of Ubx protein is reduced by mutations in Ubx.


2008 ◽  
Vol 146A (8) ◽  
pp. 1032-1037 ◽  
Author(s):  
Matías Morín ◽  
Antonio Viñuela ◽  
Teresa Rivera ◽  
Manuela Villamar ◽  
Miguel A. Moreno-Pelayo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document