scholarly journals Overexpression of Glutathione Synthetase in Indian Mustard Enhances Cadmium Accumulation and Tolerance

1999 ◽  
Vol 119 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Yong Liang Zhu ◽  
Elizabeth A.H. Pilon-Smits ◽  
Lise Jouanin ◽  
Norman Terry
2022 ◽  
Vol 147 ◽  
pp. 42-52
Author(s):  
Bhaben Chowardhara ◽  
Bedabrata Saha ◽  
Pankaj Borgohain ◽  
Jay Prakash Awasthi ◽  
Sibashish Kityania ◽  
...  

2013 ◽  
Vol 27 (4) ◽  
pp. 359-367 ◽  
Author(s):  
T. Adak ◽  
N.V.K. Chakravarty

Abstract Temporal changes in surface soil temperature were studied in winter crop. Significant changes in bare and cropped soil temperature were revealed. Air temperature showed a statistically positive and strong relationship (R2 = 0.79** to 0.92**) with the soil temperature both at morning and afternoon hours. Linear regression analysis indicated that each unit increase in ambient temperature would lead to increase in minimum and maximum soil temperatures by 1.04 and 1.02 degree, respectively. Statistically positive correlation was revealed among biophysical variables with the cumulative surface soil temperature. Linear and non-linear regression analysis indicated 62-69, 72-86 and 72-80% variation in Leaf area index, dry matter production and heat use efficiency in Indian mustard crop as a function of soil degree days. Below 60% variation in yield in Indian mustard was revealed as a function of soil temperature. In contrast, non-significant relationship between oil content and soil temperature was found, which suggests that oil accumulation in oilseed crops was not affected significantly by the soil temperature as an independent variable.


Author(s):  
Bent Al-Hoda Asghari ◽  
Mohsen Yousefi ◽  
Katarzyna Możdżeń ◽  
Joanna Puła ◽  
Peiman Zandi ◽  
...  

Indian mustard (Brassica juncea L. Czern) cultivation is suggested for regions with short seasons and low rainfall. Although there have been many studies conducted on agronomic production of mustard in Iran, the information regarding the interactive impact of cropping seasons and nitrogen fertiliser on growth characteristics and yield quality of mustard plant is still insufficient and requires further investigation. This study focused on the possible implications of different cropping seasons and different nitrogen levels on selected agronomic traits in mustard. In this experiment, five different doses of nitrogen and two sowing periods were used to assess for their combined effects on the growth parameters, seed yield and agronomic characteristics of mustard in the semi-arid climatic conditions of Takestan. The results revealed that cultivation seasons and nitrogen rates had a significant effect on plant height, biomass yield, number of siliques per plant, seed oil content and seed yield.


Author(s):  
Nora Augustien ◽  
Pawana Nur Indah ◽  
Purnawati Arika ◽  
Irsyad Irsyad ◽  
Hadi Suhardjono

Indian mustard plants are the main vegetable crops consumed by urban communities. The need for this vegetable increases along with the increase in culinary tourism in each region and the government's appeal on sustainable food home. One effort made to meet the needs of vegetable mustard in urban areas can be cultivated using polybags. The main problem of vegetable cultivation on polybags is the availability of soil media. To overcome the limitations of soil media it is attempted to substitute it with organic litter enriched with MOL (local microorganisms). The purpose of research is to find the right combination of planting media for mustard plants. The results showed that the composition of K7 = soil: compost: litter of hay: litter of maize (2: 1: 1: 1) best on plant length, number of leaves, length of root leaves and number of roots while the wet weight of mustard plant (g) K7 = soil: compost: litter of maize: litter of corn (2: 1: 1: 1) and K8 = soil: compost: litter of maize: litter of maize: cocopeat (2: 1: 1: 1: 1) or soil: compost + urea. Increased weights of wet mustard by 63% compared to soil media and 20% compared to soil composition: compost + urea. Organic straw in the form of straw: litter of corn stalk: cocopeat enriched with MOL are able to become ready-made planting media on the cultivation of indian mustard plants in polybags.


2019 ◽  
Vol 18 (9) ◽  
pp. 1875-1884
Author(s):  
Zhang Jun ◽  
Wang Wenke ◽  
Geng Yani ◽  
Wang Zhoufeng ◽  
Cao Shumiao

Author(s):  
In Soon Song ◽  
Yong Chae Cho ◽  
Soo Young Kim ◽  
Am Park ◽  
Kyung Sun Son ◽  
...  

2014 ◽  
Vol 48 (4) ◽  
pp. 381-388
Author(s):  
Dong Meng ◽  
Zhao Yunlin ◽  
Ku Wenzhen ◽  
Zhou Xiaomei ◽  
Li Yanzi

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 476e-476
Author(s):  
Craig S. Charron ◽  
Catherine O. Chardonnet ◽  
Carl E. Sams

The U.S. Clean Air Act bans the use of methyl bromide after 2001. Consequently, the development of alternative methods for control of soilborne pathogens is imperative. One alternative is to exploit the pesticidal properties of macerated tissues of Brassica spp. This study tested the potential of several Brassica spp. for control of fungal pathogens. Pythium ultimum Trow or Rhizoctonia solani Kühn plugs on potato-dextrose agar on petri dishes were sealed in 500-ml glass jars (at 22 °C) containing macerated leaves (10 g) from one of six Brassica spp. Radial growth was measured 24, 48, and 72 h after inoculation. Indian mustard (B. juncea) was the most suppressive, followed by `Florida Broadleaf' mustard (B. juncea). Volatile compounds in the jars were sampled with a solid-phase microextraction device (SPME) and identified by gas chromatography-mass spectrometry (GC-MS). Allyl isothiocyanate (AITC) comprised over 90% of the total volatiles measured from Indian mustard and `Florida Broadleaf' mustard. Isothiocyanates were detected in jars with all plants except broccoli. (Z)-3-hexenyl acetate was emitted by all plants and was the predominant volatile of `Premium Crop' broccoli (B. oleracea L. var. italica), `Michihili Jade Pagoda' Chinese cabbage (B. pekinensis), `Charmant' cabbage (B. oleracea L. var. capitata), and `Blue Scotch Curled' kale (B. oleracea L. var. viridis). To assess the influence of AITC on radial growth of P. ultimum and R. solani, AITC was added to jars to give headspace concentrations of 0.10, 0.20, and 0.30 mg·L–1 (mass of AITC per volume of headspace). Growth of both fungi was inhibited by 0.10 mg·L–1 AITC. 0.20 mg·L–1 AITC was fungicidal to P. ultimum although the highest AITC level tested (0.30 mg·L–1) did not terminate R. solani growth. These results indicate that residues from some Brassica spp. may be a viable part of a soilborne pest control strategy.


Sign in / Sign up

Export Citation Format

Share Document