scholarly journals Rapid in Vivo Acylation of Acyl Carrier Protein with Exogenous Fatty Acids in Spirodela oligorrhiza

1989 ◽  
Vol 89 (2) ◽  
pp. 707-711 ◽  
Author(s):  
Autar K. Mattoo ◽  
Franklin E. Callahan ◽  
Roshni A. Mehta ◽  
John B. Ohlrogge
2004 ◽  
Vol 48 (1) ◽  
pp. 242-249 ◽  
Author(s):  
Stéphanie Ducasse-Cabanot ◽  
Martin Cohen-Gonsaud ◽  
Hedia Marrakchi ◽  
Michel Nguyen ◽  
Didier Zerbib ◽  
...  

ABSTRACT The first-line specific antituberculous drug isoniazid inhibits the fatty acid elongation system (FAS) FAS-II involved in the biosynthesis of mycolic acids, which are major lipids of the mycobacterial envelope. The MabA protein that catalyzes the second step of the FAS-II elongation cycle is structurally and functionally related to the in vivo target of isoniazid, InhA, an NADH-dependent enoyl-acyl carrier protein reductase. The present work shows that the NADPH-dependent β-ketoacyl reduction activity of MabA is efficiently inhibited by isoniazid in vitro by a mechanism similar to that by which isoniazid inhibits InhA activity. It involves the formation of a covalent adduct between MnIII-activated isoniazid and the MabA cofactor. Liquid chromatography-mass spectrometry analyses revealed that the isonicotinoyl-NADP adduct has multiple chemical forms in dynamic equilibrium. Both kinetic experiments with isolated forms and purification of the enzyme-ligand complex strongly suggested that the molecules active against MabA activity are the oxidized derivative and a major cyclic form. Spectrofluorimetry showed that the adduct binds to the MabA active site. Modeling of the MabA-adduct complex predicted an interaction between the isonicotinoyl moiety of the inhibitor and Tyr185. This hypothesis was supported by the fact that a higher 50% inhibitory concentration of the adduct was measured for MabA Y185L than for the wild-type enzyme, while both proteins presented similar affinities for NADP+. The crystal structure of MabA Y185L that was solved showed that the substitution of Tyr185 induced no significant conformational change. The description of the first inhibitor of the β-ketoacyl reduction step of fatty acid biosynthesis should help in the design of new antituberculous drugs efficient against multidrug-resistant tubercle bacilli.


2013 ◽  
Vol 58 (2) ◽  
pp. 931-935 ◽  
Author(s):  
Jason E. Cummings ◽  
Luke C. Kingry ◽  
Drew A. Rholl ◽  
Herbert P. Schweizer ◽  
Peter J. Tonge ◽  
...  

ABSTRACTThe bacterial fatty acid biosynthesis pathway is a validated target for the development of novel chemotherapeutics. However, sinceBurkholderia pseudomalleicarries genes that encode both FabI and FabV enoyl-acyl carrier protein (ACP) reductase homologues, the enoyl-ACP reductase that is essential forin vivogrowth needs to be defined so that the correct drug target can be chosen for development. Accordingly, ΔfabI1, ΔfabI2, and ΔfabVknockout strains were constructed and tested in a mouse model of infection. Mice infected with a ΔfabI1strain did not show signs of morbidity, mortality, or dissemination after 30 days of infection compared to the wild-type and ΔfabI2and ΔfabVmutant strains that had times to mortality of 60 to 84 h. Although signs of morbidity and mortality of ΔfabI2and ΔfabVstrains were not significantly different from those of the wild-type strain, a slight delay was observed. A FabI1-specific inhibitor was used to confirm that inhibition of FabI1 results in reduced bacterial burden and efficacy in an acuteB. pseudomalleimurine model of infection. This work establishes that FabI1 is required for growth ofBurkholderia pseudomalleiin vivoand is a potential molecular target for drug development.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Gajanan Shrikant Patil ◽  
Priyadarshan Kinatukara ◽  
Sudipta Mondal ◽  
Sakshi Shambhavi ◽  
Ketan D Patel ◽  
...  

Fatty acyl-AMP ligases (FAALs) channelize fatty acids towards biosynthesis of virulent lipids in mycobacteria and other pharmaceutically or ecologically important polyketides and lipopeptides in other microbes. They do so by bypassing the ubiquitous coenzyme A-dependent activation and rely on the acyl carrier protein-tethered 4'-phosphopantetheine (holo-ACP). The molecular basis of how FAALs strictly reject chemically identical and abundant acceptors like coenzyme A (CoA) and accept holo-ACP unlike other members of the ANL superfamily remains elusive. We show FAALs have plugged the promiscuous canonical CoA-binding pockets and utilize highly selective alternative binding sites. These alternative pockets can distinguish adenosine 3', 5'-bisphosphate-containing CoA from holo-ACP and thus FAALs can distinguish between CoA and holo-ACP. These exclusive features helped identify the omnipresence of FAAL-like proteins and their emergence in plants, fungi, and animals with unconventional domain organisations. The universal distribution of FAALs suggests they are parallelly evolved with FACLs for ensuring a CoA-independent activation and redirection of fatty acids towards lipidic metabolites.


2020 ◽  
Vol 18 ◽  
Author(s):  
Surabhi Jain ◽  
Smriti Sharma ◽  
Dhrubo Jyoti Sen ◽  
Saurabh S Pandya

: Tuberculosis, epidemic that needs new molecules with high potency and minimum side effects. In same respect, this review emphases on important target enoyl-acyl carrier protein reductase or INHA crucial in completion of FAS II cycle. INHA retain its fame since inception of drug Isoniazid as inhibitors have long residence time hence good activity. One of the cause of failure of conventional drugs is resistance towards activating or target gene. Here, we propose direct inhibitors that doesn’t need prior activation by Kat G. Some of the categories are aryl amide, Piperazine, Thiadiazole, Benzamide etc. that are specifically active against INHA along with their Structure activity relationship. Many of them are efficient in micro molar concentration whereas Pyrazole carboxamide are active in nano molar concentration and derivative of 4-hydroxy pyridones was effective in vivo. Natural products are also in way to combat tuberculosis. Furthermore, from available proteins of wild and mutant strains new leads can be designed sucessfully by utilizing information of cocrystallized ligand.


Structure ◽  
2001 ◽  
Vol 9 (3) ◽  
pp. 233-243 ◽  
Author(s):  
Johan Gotthardt Olsen ◽  
Anders Kadziola ◽  
Penny von Wettstein-Knowles ◽  
Mads Siggaard-Andersen ◽  
Sine Larsen

2017 ◽  
Vol 114 (34) ◽  
pp. 9092-9097 ◽  
Author(s):  
Shi-Hui Dong ◽  
Nicole D. Frane ◽  
Quin H. Christensen ◽  
E. Peter Greenberg ◽  
Rajesh Nagarajan ◽  
...  

In severalProteobacteria, LuxI-type enzymes catalyze the biosynthesis of acyl–homoserine lactones (AHL) signals usingS-adenosyl–l-methionine and either cellular acyl carrier protein (ACP)-coupled fatty acids or CoA–aryl/acyl moieties as progenitors. Little is known about the molecular mechanism of signal biosynthesis, the basis for substrate specificity, or the rationale for donor specificity for any LuxI member. Here, we present several cocrystal structures of BjaI, a CoA-dependent LuxI homolog that represent views of enzyme complexes that exist along the reaction coordinate of signal synthesis. Complementary biophysical, structure–function, and kinetic analysis define the features that facilitate the unusual acyl conjugation withS-adenosylmethionine (SAM). We also identify the determinant that establishes specificity for the acyl donor and identify residues that are critical for acyl/aryl specificity. These results highlight how a prevalent scaffold has evolved to catalyze quorum signal synthesis and provide a framework for the design of small-molecule antagonists of quorum signaling.


1996 ◽  
Vol 40 (12) ◽  
pp. 2813-2819 ◽  
Author(s):  
R A Slayden ◽  
R E Lee ◽  
J W Armour ◽  
A M Cooper ◽  
I M Orme ◽  
...  

Thiolactomycin (TLM) possesses in vivo antimycobacterial activity against the saprophytic strain Mycobacterium smegmatis mc2155 and the virulent strain M. tuberculosis Erdman, resulting in complete inhibition of growth on solid media at 75 and 25 micrograms/ml, respectively. Use of an in vitro murine macrophage model also demonstrated the killing of viable intracellular M. tuberculosis in a dose-dependent manner. Through the use of in vivo [1,2-14C]acetate labeling of M. smegmatis, TLM was shown to inhibit the synthesis of both fatty acids and mycolic acids. However, synthesis of the shorter-chain alpha'-mycolates of M. smegmatis was not inhibited by TLM, whereas synthesis of the characteristic longer-chain alpha-mycolates and epoxymycolates was almost completely inhibited at 75 micrograms/ml. The use of M. smegmatis cell extracts demonstrated that TLM specifically inhibited the mycobacterial acyl carrier protein-dependent type II fatty acid synthase (FAS-II) but not the multifunctional type I fatty acid synthase (FAS-I). In addition, selective inhibition of long-chain mycolate synthesis by TLM was demonstrated in a dose-response manner in purified, cell wall-containing extracts of M. smegmatis cells. The in vivo and in vitro data and knowledge of the mechanism of TLM resistance in Escherichia coli suggest that two distinct TLM targets exist in mycobacteria, the beta-ketoacyl-acyl carrier protein synthases involved in FAS-II and the elongation steps leading to the synthesis of the alpha-mycolates and oxygenated mycolates. The efficacy of TLM against M. smegmatis and M. tuberculosis provides the prospects of identifying fatty acid and mycolic acid biosynthetic genes and revealing a novel range of chemotherapeutic agents directed against M. tuberculosis.


Sign in / Sign up

Export Citation Format

Share Document