scholarly journals The Small Regulatory RNA SyR1/PsrR1 Controls Photosynthetic Functions in Cyanobacteria

2014 ◽  
Vol 26 (9) ◽  
pp. 3661-3679 ◽  
Author(s):  
J. Georg ◽  
D. Dienst ◽  
N. Schurgers ◽  
T. Wallner ◽  
D. Kopp ◽  
...  
PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3471 ◽  
Author(s):  
Antje K. Heinrich ◽  
Merle Hirschmann ◽  
Nick Neubacher ◽  
Helge B. Bode

The Gram-negative bacteriaPhotorhabdusandXenorhabdusare known to produce a variety of different natural products (NP). These compounds play different roles since the bacteria live in symbiosis with nematodes and are pathogenic to insect larvae in the soil. Thus, a fine tuned regulatory system controlling NP biosynthesis is indispensable. Global regulators such as Hfq, Lrp, LeuO and HexA have been shown to influence NP production ofPhotorhabdusandXenorhabdus. Additionally, photopyrones as quorum sensing (QS) signals were demonstrated to be involved in the regulation of NP production inPhotorhabdus.In this study, we investigated the role of another possible QS signal, autoinducer-2 (AI-2), in regulation of NP production. The AI-2 synthase (LuxS) is widely distributed within the bacterial kingdom and has a dual role as a part of the activated methyl cycle pathway, as well as being responsible for AI-2 precursor production. We deletedluxSin three different entomopathogenic bacteria and compared NP levels in the mutant strains to the wild type (WT) but observed no difference to the WT strains. Furthermore, the absence of the small regulatory RNAmicA, which is encoded directly upstream ofluxS, did not influence NP levels. Phenotypic differences between theP. luminescens luxSdeletion mutant and an earlier describedluxSdeficient strain ofP. luminescenssuggested that two phenotypically different strains have evolved in different laboratories.


2016 ◽  
Vol 21 (4) ◽  
pp. 483-490 ◽  
Author(s):  
Minhui Sung ◽  
Seung Min Yoo ◽  
Ren Jun ◽  
Jae Eun Lee ◽  
Sang Yup Lee ◽  
...  

2015 ◽  
Vol 197 (23) ◽  
pp. 3720-3730 ◽  
Author(s):  
Jessica L. Danger ◽  
Nishanth Makthal ◽  
Muthiah Kumaraswami ◽  
Paul Sumby

ABSTRACTThe group AStreptococcus(GAS;Streptococcus pyogenes) causes more than 700 million human infections each year. The success of this pathogen can be traced in part to the extensive arsenal of virulence factors that are available for expression in temporally and spatially specific manners. To modify the expression of these virulence factors, GAS use both protein- and RNA-based regulators, with the best-characterized RNA-based regulator being the small regulatory RNA (sRNA) FasX. FasX is a 205-nucleotide sRNA that contributes to GAS virulence by enhancing the expression of the thrombolytic secreted virulence factor streptokinase and by repressing the expression of the collagen-binding cell surface pili. Here, we have expanded the FasX regulon, showing that this sRNA also negatively regulates the expression of the adhesion- and internalization-promoting, fibronectin-binding proteins PrtF1 and PrtF2. FasX posttranscriptionally regulates the expression of PrtF1/2 through a mechanism that involves base pairing to theprtF1andprtF2mRNAs within their 5′ untranslated regions, overlapping the mRNA ribosome-binding sites. Thus, duplex formation between FasX and theprtF1andprtF2mRNAs blocks ribosome access, leading to an inhibition of mRNA translation. Given that FasX positively regulates the expression of the spreading factor streptokinase and negatively regulates the expression of the collagen-binding pili and of the fibronectin-binding PrtF1/2, our data are consistent with FasX functioning as a molecular switch that governs the transition of GAS between the colonization and dissemination stages of infection.IMPORTANCEMore than half a million deaths each year are a consequence of infections caused by GAS. Insights into how this pathogen regulates the production of proteins during infection may facilitate the development of novel therapeutic or preventative regimens aimed at inhibiting this activity. Here, we have expanded insight into the regulatory activity of the GAS small RNA FasX. In addition to identifying that FasX reduces the abundance of the cell surface-located fibronectin-binding proteins PrtF1/2, fibronectin is present in high abundance in human tissues, and we have determined the mechanism behind this regulation. Importantly, as FasX is the only mechanistically characterized regulatory RNA in GAS, it serves as a model RNA in this and related pathogens.


2010 ◽  
Vol 10 (1) ◽  
pp. 276 ◽  
Author(s):  
Gwendoline Kint ◽  
David De Coster ◽  
Kathleen Marchal ◽  
Jos Vanderleyden ◽  
Sigrid CJ De Keersmaecker

2012 ◽  
Vol 142 (5) ◽  
pp. S-681
Author(s):  
Sandrine Y. Tchaptchet ◽  
Ting-Jia Fan ◽  
Laura E. Goeser ◽  
Ryan B. Sartor ◽  
Jonathan J. Hansen

Sign in / Sign up

Export Citation Format

Share Document