scholarly journals ESCRT-III-Associated Protein ALIX Mediates High-Affinity Phosphate Transporter Trafficking to Maintain Phosphate Homeostasis in Arabidopsis

2015 ◽  
Vol 27 (9) ◽  
pp. 2560-2581 ◽  
Author(s):  
Ximena Cardona-López ◽  
Laura Cuyas ◽  
Elena Marín ◽  
Charukesi Rajulu ◽  
María Luisa Irigoyen ◽  
...  
2005 ◽  
Vol 4 (8) ◽  
pp. 1387-1395 ◽  
Author(s):  
Sriwan Wongwisansri ◽  
Paul J. Laybourn

ABSTRACT The histone deacetylase Rpd3p functions as a transcriptional repressor of a diverse set of genes, including PHO5. Here we describe a novel role for RPD3 in the regulation of phosphate transporter Pho84p retention in the cytoplasmic membrane. We show that under repressing conditions (with Pi), PHO5 expression is increased in a pho4Δ rpd3Δ strain, demonstrating PHO regulatory pathway independence. However, the effect of RPD3 disruption on PHO5 activation kinetics is dependent on the PHO regulatory pathway. Upon switching to activating conditions (without Pi), PHO5 transcripts accumulated more rapidly in rpd3Δ cells. This more rapid response correlates with a defect in phosphate uptake due to premature recycling of Pho84p, the high-affinity H+/PO4 3− symporter. Thus, RPD3 also participates in PHO5 regulation through a previously unidentified effect on maintenance of high-affinity phosphate uptake during phosphate starvation. We propose that Rpd3p has a negative role in the regulation of Pho84p endocytosis.


2018 ◽  
Author(s):  
Synan AbuQamar ◽  
Thomas G. Sors ◽  
Suzanne M. Cunningham ◽  
Jeffrey J. Volenec

Phosphorus deficiency reduces forage yield and stand persistence of alfalfa (Medicago sativa L.). Our objectives were to isolate and characterize a high-affinity phosphate-transporter (P-transporter) from alfalfa roots (Medicago sativa L.); determine how phosphorus (P) nutrition impacts P-uptake, growth, and carbohydrate and protein metabolism of alfalfa cells; and learn how expression of the P-transporter is influenced by P nutrition. An 1087-base pair (bp) sequence was isolated using RT-PCR that possessed high nucleotide and amino acid sequence similarity to high-affinity P-transporters. Cultured cells were sampled at 3-day intervals for 9 days while growing in media containing P concentrations ranging from 0 to 10 mM. Media P concentrations declined rapidly in all P treatments by day 6. Low media P concentrations (0, 0.1 and 0.5 mM) reduced cell growth rates compared to higher media P levels (2.5, 5 and 10 mM). Suspension cell cultures supplied 0.5, 2.5, 5, and 10 mM P had lower starch concentrations by day 3 compared to cells cultured in media containing 0 and 0.1 mM P. Steady-state transcript levels for the high-affinity P- transporter were high in P-deprived cells, but declined within 1 day when cells were provided 10 mM P.


2019 ◽  
Author(s):  
Ritam Sinha ◽  
Rhiannon M. LeVeque ◽  
Marvin Q. Bowlin ◽  
Michael J. Gray ◽  
Victor J. DiRita

AbstractCampylobacter jejuni causes acute gastroenteritis world-wide and is transmitted primarily through poultry, in which it is often a commensal member of the intestinal microbiota. Previous RNASeq experiments showed that transcripts from an operon encoding a high affinity phosphate transporter (PstSCAB) of C. jejuni were among the most abundant when grown in chickens. Elevated levels of the pstSCAB mRNA were also identified in an RNASeq experiment from human infection studies. In this study, we explore the role of PstSCAB in the biology and colonization potential of C. jejuni. Our experimental results demonstrate that cells lacking PstSCAB survive poorly in stationary phase, nutrient-limiting media, and under osmotic conditions reflective of those in the chicken. Polyphosphate levels in the mutant cells were elevated at stationary phase, consistent with alterations in expression of polyphosphate metabolism genes. C. jejuni were highly attenuated in colonization of newly hatched chicks, recovered at levels several orders of magnitude below wild type. Mutant and wild type grew similarly in complex media but the pstSCAB mutant exhibited a significant growth defect in minimal media supplemented with L-lactate, postulated as a carbon source in vivo. Poor growth in lactate correlated with diminished expression of acetogenesis pathway genes previously demonstrated as important for colonizing chickens. The phosphate transport system is thus essential for diverse aspects of C. jejuni physiology and in vivo fitness and survival.ImportanceC. jejuni causes millions of gastrointestinal infections annually worldwide. Poultry and poultry products are major sources of C. jejuni infection to human as the microbe is a commensal colonizer of the chicken gastrointestinal tract. Due to the emergence of multi-drug resistance in C. jejuni, there is need to identify alternative ways to control this pathogen. Genes encoding the high-affinity phosphate transporter PstSCAB were highly expressed during colonization of C. jejuni in chicken and human. In this study, we address the role this high-affinity phosphate transporter PstSCAB of C. jejuni on chicken colonization and for its general physiology. PstSCAB is required for colonization in chicken, metabolism and survival under different stress responses and during growth on lactate, a potential substrate for growth of C. jejuni in chickens. Our study highlights that PstSCAB may be an effective target to develop mechanisms to control the bacterial burden in both chicken and human.


2020 ◽  
Vol 202 (7) ◽  
Author(s):  
Ritam Sinha ◽  
Rhiannon M. LeVeque ◽  
Marvin Q. Bowlin ◽  
Michael J. Gray ◽  
Victor J. DiRita

ABSTRACT Campylobacter jejuni causes acute gastroenteritis worldwide and is transmitted primarily through poultry, in which it is often a commensal member of the intestinal microbiota. Previous transcriptome sequencing (RNA-Seq) experiment showed that transcripts from an operon encoding a high-affinity phosphate transporter (PstSCAB) of C. jejuni were among the most abundant when the bacterium was grown in chickens. Elevated levels of the pstSCAB mRNA were also identified in an RNA-Seq experiment from human infection studies. In this study, we explore the role of PstSCAB in the biology and colonization potential of C. jejuni. Our results demonstrate that cells lacking PstSCAB survive poorly in stationary phase, in nutrient-limiting media, and under osmotic conditions reflective of those in the chicken. Polyphosphate levels in the mutant cells were elevated at stationary phase, consistent with alterations in expression of polyphosphate metabolism genes. The mutant strain was highly attenuated for colonization of newly hatched chicks, with levels of bacteria at several orders of magnitude below wild-type levels. Mutant and wild type grew similarly in complex media, but the pstS::kan mutant exhibited a significant growth defect in minimal medium supplemented with l-lactate, postulated as a carbon source in vivo. Poor growth in lactate correlated with diminished expression of acetogenesis pathway genes previously demonstrated as important for colonizing chickens. The phosphate transport system is thus essential for diverse aspects of C. jejuni physiology and in vivo fitness and survival. IMPORTANCE Campylobacter jejuni causes millions of human gastrointestinal infections annually, with poultry a major source of infection. Due to the emergence of multidrug resistance in C. jejuni, there is need to identify alternative ways to control this pathogen. Genes encoding the high-affinity phosphate transporter PstSCAB are highly expressed by C. jejuni in chickens and humans. In this study, we address the role of PstSCAB on chicken colonization and other C. jejuni phenotypes. PstSCAB is required for colonization in chicken, metabolism and survival under different stress responses, and during growth on lactate, a potential growth substrate in chickens. Our study highlights that PstSCAB may be an effective target to develop mechanisms for controlling bacterial burden in both chicken and human.


Sign in / Sign up

Export Citation Format

Share Document