Determination of the Burgers vector of perfect dislocations observed by X-ray topography in hexagonal single crystals

1979 ◽  
Vol 12 (1) ◽  
pp. 110-115 ◽  
Author(s):  
C. G'Sell ◽  
Y. Epelboin
Keyword(s):  
1996 ◽  
Vol 437 ◽  
Author(s):  
W. Si ◽  
M. Dudley ◽  
C. Carter ◽  
R. Glass ◽  
V. Tsvetkov

AbstractIndividual screw dislocations along the [0001] axis in 6H-SiC single crystals have been characterized by means of Synchrotron White Beam X-ray Topography (SWBXT). The magnitude of the Burgers vector was determined from: (1) the diameter of circular diffraction-contrast images of dislocations in back-reflection topographs, (2) the width of bi-modal images associated with screw dislocations in transmission topographs, (3) the magnitude of the tilt of the lattice planes on both sides of dislocation core in projection topographs, and (4) also the magnitude of the tilt of the lattice planes in section topographs. All of the four methods showed reasonable consistency. The sense of the Burgers vector can also be deduced from the abovementioned tilt of the lattice planes. Results revealed that in 6H-SiC a variety of screw dislocations can be found with Burgers vector magnitude ranging from 1c to 7c (c is the lattice constant along [0001] axis). This work demonstrates that SWBXT can be used as a quantitative technique for detailed analyses of line defect configurations.


2005 ◽  
Vol 38 (4) ◽  
pp. 678-684 ◽  
Author(s):  
Balder Ortner

A method for the X-ray determination of lattice-plane distances is given. Similar to Bond's method, it is based on the measurement of rocking curves, with some advantages and disadvantages compared with the former method. The new method is especially designed for single-crystal stress measurement. Its usefulness is demonstrated in two examples of lattice-constant and stress measurement.


IUCrData ◽  
2019 ◽  
Vol 4 (11) ◽  
Author(s):  
Artem V. Malin ◽  
Sergei I. Ivlev ◽  
Roman V. Ostvald ◽  
Florian Kraus

Single crystals of rubidium tetrafluoridobromate(III), RbBrF4, were grown by melting and recrystallizing RbBrF4 from its melt. This is the first determination of the crystal structure of RbBrF4 using single-crystal X-ray diffraction data. We confirmed that the structure contains square-planar [BrF4]− anions and rubidium cations that are coordinated by F atoms in a square-antiprismatic manner. The compound crystallizes in the KBrF4 structure type. Atomic coordinates and bond lengths and angles were determined with higher precision than in a previous report based on powder X-ray diffraction data [Ivlev et al. (2015). Z. Anorg. Allg. Chem. 641, 2593–2598].


1983 ◽  
Vol 22 (Part 2, No. 3) ◽  
pp. L151-L153
Author(s):  
Kohtaro Ishida ◽  
Yoshinori Kobayashi ◽  
Hiroyuki Katoh ◽  
Satio Takagi
Keyword(s):  

1963 ◽  
Vol 7 ◽  
pp. 107-116
Author(s):  
Y. A. Konnan

AbstractThe determination of the orientation of a single crystal by Laue X-ray photographs is dependent on the identification of the indices of the spots. At the present time, the determination of indices is done by various methods, none of which is entirely systematical. A method for establishing the indices of the spots which avoids a trial-and-error approach is described here. The method is graphical, uses a specially compiled table of erystallographic angles and is not dependent on the complexity of the structure of the crystal or its symmetry. An example of the cubic system is included. With more complex crystal structures the method becomes very laborious and the help of computer methods is suggested.


Crystals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 340 ◽  
Author(s):  
Oswaldo Sánchez-Dena ◽  
Carlos J. Villagómez ◽  
César D. Fierro-Ruíz ◽  
Artemio S. Padilla-Robles ◽  
Rurik Farías ◽  
...  

Existent methods for determining the composition of lithium niobate single crystals are mainly based on their variations due to changes in their electronic structure, which accounts for the fact that most of these methods rely on experimental techniques using light as the probe. Nevertheless, these methods used for single crystals fail in accurately predicting the chemical composition of lithium niobate powders due to strong scattering effects and randomness. In this work, an innovative method for determining the chemical composition of lithium niobate powders, based mainly on the probing of secondary thermodynamic phases by X-ray diffraction analysis and structure refinement, is employed. Its validation is supported by the characterization of several samples synthesized by the standard and inexpensive method of mechanosynthesis. Furthermore, new linear equations are proposed to accurately describe and determine the chemical composition of this type of powdered material. The composition can now be determined by using any of four standard characterization techniques: X-Ray Diffraction (XRD), Raman Spectroscopy (RS), UV-vis Diffuse Reflectance (DR), and Differential Thermal Analysis (DTA). In the case of the existence of a previous equivalent description for single crystals, a brief analysis of the literature is made.


2005 ◽  
Vol 105 ◽  
pp. 89-94 ◽  
Author(s):  
Margarita Isaenkova ◽  
Yuriy Perlovich

As applied to tubes from Zr-based alloys, the X-ray method was developed to determine the dislocation density distribution in a-Zr depending on the orientation of Burgers vector. The method consists in registration of X-ray line profiles by each successive position of the sample in the course of diffractometric texture measurement using reflections of two orders, the following determination of coherent domain size and lattice distortion by means of the Warren-Averbach method for each orientation of reflecting planes, separate calculation of the density of c- and a-dislocations with all possible orientations of Burgers vector and presentation of results in generalized pole figures. Obtained data testify that the dislocation density varies within very wide intervals of several orders of magnitude depending on the grain orientation both in as-rolled and annealed tubes. Features of the constructed dislocation distributions are closely related to the crystallographic texture of studied tubes.


2000 ◽  
Vol 53 (9) ◽  
pp. 799 ◽  
Author(s):  
Ian M. Atkinson ◽  
David C. R. Hockless ◽  
Leonard F. Lindoy ◽  
Owen A. Matthews ◽  
George V. Meehan ◽  
...  

The synthesis and single-crystal X-ray structure determination of a new cage molecule containing four oxygen, two sulfur, and two nitrogen heteroatoms are described. The structure determination shows that a twist occurs about each (tribenzyl) nitrogen bridgehead so that an overall helical configuration within putative quasi-2 symmetry is generated; both nitrogens have their lone pairs orientatedexo. Single crystals of this compound are homochiral. Semiempirical MO calculations have been used to probe the topological rigidity of this system relative to the more symmetrical analogue incorporating six oxygen and two nitrogen heteroatoms reported previously. The introduction of the sulfur atoms appears to restrict the facile interconversion between enantiomers that was predicted for the N2O6-analogue mentioned above. The implications of the structure for the design of larger cages are discussed.


Sign in / Sign up

Export Citation Format

Share Document