Determination of the sign of the burgers vector for nearly screw dislocations a direct application of x-ray dynamical theory

1980 ◽  
Vol 41 (3) ◽  
pp. 291-306 ◽  
Author(s):  
E. Dunia ◽  
C. Malgrange ◽  
J. F. Petroff
1996 ◽  
Vol 437 ◽  
Author(s):  
W. Si ◽  
M. Dudley ◽  
C. Carter ◽  
R. Glass ◽  
V. Tsvetkov

AbstractIndividual screw dislocations along the [0001] axis in 6H-SiC single crystals have been characterized by means of Synchrotron White Beam X-ray Topography (SWBXT). The magnitude of the Burgers vector was determined from: (1) the diameter of circular diffraction-contrast images of dislocations in back-reflection topographs, (2) the width of bi-modal images associated with screw dislocations in transmission topographs, (3) the magnitude of the tilt of the lattice planes on both sides of dislocation core in projection topographs, and (4) also the magnitude of the tilt of the lattice planes in section topographs. All of the four methods showed reasonable consistency. The sense of the Burgers vector can also be deduced from the abovementioned tilt of the lattice planes. Results revealed that in 6H-SiC a variety of screw dislocations can be found with Burgers vector magnitude ranging from 1c to 7c (c is the lattice constant along [0001] axis). This work demonstrates that SWBXT can be used as a quantitative technique for detailed analyses of line defect configurations.


1997 ◽  
Vol 483 ◽  
Author(s):  
P. G. Neudeck ◽  
W. Huang ◽  
M. Dudley

AbstractIt is well-known that SiC wafer quality deficiencies are delaying the realization of outstandingly superior 4H-SiC power electronics. While efforts to date have centered on eradicating micropipes (i.e., hollow core super-screw dislocations with Burgers vector > 2c), 4H-SiC wafers and epilayers also contain elementary screw dislocations (i.e., Burgers vector = Ic with no hollow core) in densities on the order of thousands per cm2, nearly 100-fold micropipe densities. This paper describes an initial study into the impact of elementary screw dislocations on the reverse-bias current-voltage (I-V) characteristics of 4H-SiC p+n diodes. First, Synchrotron White Beam X-ray Topography (SWBXT) was employed to map the exact locations of elementary screw dislocations within small-area 4H-SiC p+n mesa diodes. Then the high-field reverse leakage and breakdown properties of these diodes were subsequently characterized on a probing station outfitted with a dark box and video camera. Most devices without screw dislocations exhibited excellent characteristics, with no detectable leakage current prior to breakdown, a sharp breakdown I-V knee, and no visible concentration of breakdown current. In contrast devices that contained at least one elementary screw dislocation exhibited a 5% to 35% reduction in breakdown voltage, a softer breakdown I-V knee, and visible microplasmas in which highly localized breakdown current was concentrated. The locations of observed breakdown microplasmas corresponded exactly to the locations of elementary screw dislocations identified by SWBXT mapping. While not as detrimental to SiC device performance as micropipes, the undesirable breakdown characteristics of elementary screw dislocations could nevertheless adversely affect the performance and reliability of 4H-SiC power devices.


1983 ◽  
Vol 22 (Part 2, No. 3) ◽  
pp. L151-L153
Author(s):  
Kohtaro Ishida ◽  
Yoshinori Kobayashi ◽  
Hiroyuki Katoh ◽  
Satio Takagi
Keyword(s):  

2008 ◽  
Vol 1069 ◽  
Author(s):  
Yi Chen ◽  
Xianrong Huang ◽  
Ning Zhang ◽  
Govindhan Dhanaraj ◽  
Edward Sanchez ◽  
...  

ABSTRACTIn our study, closed-core threading screw dislocations and micropipes were studied using synchrotron x-ray topography of various geometries. The Burgers vector magnitude of TSDs can be quantitatively determined from their dimensions in back-reflection x-ray topography, based on ray-tracing simulation and this has been verified by the images of elementary TSDs. Dislocation senses of closed-core threading screw dislocations and micropipes can be revealed by grazing-incidence x-ray topography. The threading screw dislocations can be converted into Frank partial dislocations on the basal planes and this has been confirmed by transmission synchrotron x-ray topography.


2007 ◽  
Vol 22 (4) ◽  
pp. 845-849 ◽  
Author(s):  
Isaho Kamata ◽  
Hidekazu Tsuchida ◽  
William M. Vetter ◽  
Michael Dudley

Synchrotron x-ray topography with a high-resolution setup using 1128 reflection was carried out on 4H-SiC epilayers. Four different shapes of threading-edge dislocation according to Burgers vector direction were observed. The four types of threading-edge dislocation images were calculated by computer simulation, and the experimental results correlated well with the simulation results. The detailed topographic features generated by plural screw dislocations and basal plane dislocations were also investigated.


2005 ◽  
Vol 105 ◽  
pp. 89-94 ◽  
Author(s):  
Margarita Isaenkova ◽  
Yuriy Perlovich

As applied to tubes from Zr-based alloys, the X-ray method was developed to determine the dislocation density distribution in a-Zr depending on the orientation of Burgers vector. The method consists in registration of X-ray line profiles by each successive position of the sample in the course of diffractometric texture measurement using reflections of two orders, the following determination of coherent domain size and lattice distortion by means of the Warren-Averbach method for each orientation of reflecting planes, separate calculation of the density of c- and a-dislocations with all possible orientations of Burgers vector and presentation of results in generalized pole figures. Obtained data testify that the dislocation density varies within very wide intervals of several orders of magnitude depending on the grain orientation both in as-rolled and annealed tubes. Features of the constructed dislocation distributions are closely related to the crystallographic texture of studied tubes.


1991 ◽  
Vol 9 (1) ◽  
pp. 135-148 ◽  
Author(s):  
E. Förster ◽  
K. Gäbel ◽  
I. Uschmann

X-ray spectroscopical and microscopical methods are used for the determination of the spectral and spatial distribution of X-ray intensity of laser-produced plasmas. The use of Bragg reflections of two-dimensionally bent crystals enables the X-ray microscopical imaging in narrow spectral ranges (Δλ/λ = 10−4 to 10−2) with wavelengths 0.1 nm < λ > 2.6 nm. It is possible to adapt, in the X-ray microscope, the distances, magnification, position, and width of the spectral window to the special conditions of the laser facility. Manufacturing and testing of the two-dimensionally bent crystals requires a great deal of effort. It was demonstrated that a spatial resolution of about 5 μm was achieved, and that the experimentally determined reflectivity was found to be in close agreement with the dynamical theory of X-ray interferences. Due to high luminosity of the X-ray microscope, in experiments with laser-produced plasmas it was necessary to attenuate the radiation with aperture-limiting diaphragms or filters down to 0.01–1% of the original intensity in the case of a magnification of about one. Emission of the resonance line W 1–2, the intercombination line of helium-like ions, and Lyman alpha line were imaged simultaneously with a three-channel microscope. Such images form the foundation for establishing the Ne(r), Tz(r) maps.


2009 ◽  
Vol 15 (S2) ◽  
pp. 1018-1019
Author(s):  
ME Twigg ◽  
YN Picard ◽  
JD Caldwell ◽  
CR Eddy

Extended abstract of a paper presented at Microscopy and Microanalysis 2009 in Richmond, Virginia, USA, July 26 – July 30, 2009


2012 ◽  
Vol 717-720 ◽  
pp. 343-346 ◽  
Author(s):  
Fang Zhen Wu ◽  
Huan Huan Wang ◽  
Sha Yan Byrapa ◽  
Balaji Raghothamachar ◽  
Michael Dudley ◽  
...  

Synchrotron White Beam X-ray Topography (SWBXT) imaging of wafers cut parallel to the growth axis from 4H-SiC boules grown using Physical Vapor Transport has enabled visualization of the evolution of the defect microstructure. Here we present observations of the propagation and post-growth mutual interaction of threading growth dislocations with c-component of Burgers vector. Detailed contrast extinction studies reveal the presence of two types of such dislocations: pure c-axis screw dislocations and those with Burgers Vector n1c+n2a, where n1is equal to 1 and n2is equal to 1 or 2. In addition, observations of dislocation propagation show that some of the threading dislocations with c-component of Burgers adopt a curved, slightly helical morphology which can drive the dislocations from adjacent nucleation sites together enabling them to respond to the inter-dislocation forces and react. Since all of the dislocations exhibiting such helical configurations have significant screw component, and in view of the fact that such dislocations are typically not observed to glide, it is believed that such morphologies result in large part from the interaction of a non-equilibrium concentration of vacancies with the originally approximately straight dislocation cores during post-growth cooling. Such interactions can lead to complete or partial Burgers vector annihilation. Among the reactions observed are: (a) the reaction between opposite-sign threading screw dislocations with Burgers vectors c and –c wherein some segments annihilate leaving others in the form of trails of stranded loops comprising closed dislocation dipoles; (b) the reaction between threading dislocations with Burgers vectors of -c+a and c+a wherein the opposite c-components annihilate leaving behind the two a-components; (c) the similar reaction between threading dislocations with Burgers vectors of -c and c+a leaving behind the a-component.


Sign in / Sign up

Export Citation Format

Share Document