MgSO4·11H2O and MgCrO4·11H2O based on time-of-flight neutron single-crystal Laue data

Author(s):  
A. Dominic Fortes ◽  
Ian G. Wood ◽  
Matthias J. Gutmann

Hexaaquamagnesium(II) sulfate pentahydrate, [Mg(H2O)6]SO4·5H2O, and hexaaquamagnesium(II) chromate(II) pentahydrate, [Mg(H2O)6][CrO4]·5H2O, are isomorphous, being composed of hexaaquamagnesium(II) octahedra, [Mg(H2O)6]2+, and sulfate (chromate) tetrahedral oxyanions, SO42−(CrO42−), linked by hydrogen bonds. There are two symmetry-inequivalent centrosymmetric octahedra:M1 at (0, 0, 0) donates hydrogen bonds directly to the tetrahedral oxyanion,T1, at (0.405, 0.320, 0.201), whereas theM2 octahedron at (0, 0, {1 \over 2}) is linked to the oxyanionviafive interstitial water molecules. Substitution of CrVIfor SVIleads to a substantial expansion ofT1, since the Cr—O bond is approximately 12% longer than the S—O bond. This expansion is propagated through the hydrogen-bonded framework to produce a 3.3% increase in unit-cell volume; the greatest part of this chemically induced strain is manifested along theb* direction. The hydrogen bonds in the chromate compound mitigate ∼20% of the expected strain due to the larger oxyanion, becoming shorter (i.e.stronger) and more linear than in the sulfate analogue. The bifurcated hydrogen bond donated by one of the interstitial water molecules is significantly more symmetrical in the chromate analogue.

2006 ◽  
Vol 62 (5) ◽  
pp. o1754-o1755
Author(s):  
Neng-Fang She ◽  
Sheng-Li Hu ◽  
Hui-Zhen Guo ◽  
An-Xin Wu

The title compound, C24H18Br2N4O2·H2O, forms a supramolecular structure via N—H...O, O—H...O and C—H...O hydrogen bonds. In the crystal structure, the water molecule serves as a bifurcated hydrogen-bond acceptor and as a hydrogen-bond donor.


2018 ◽  
Vol 74 (4) ◽  
pp. 406-410 ◽  
Author(s):  
Mark Strey ◽  
Peter G. Jones

During our studies of urea and thiourea adducts, we noticed that no adducts with unsubstituted pyridine had been structurally investigated. The 1:1 adduct of pyridine and urea, C5H5N·CH4N2O, crystallizes in the P21/c space group with Z = 4. The structure is of a standard type for urea adducts, whereby the urea molecules form a ribbon, parallel to the a axis, consisting of linked R 2 2(8) rings, and the pyridine molecules are attached to the periphery of the ribbon by bifurcated (N—H...)2N hydrogen bonds. The 1:1 adduct of pyridine and thiourea, C5H5N·CH4N2S, crystallizes in the P21/n space group, with Z = 32 (Z′ = 8). The structure displays similar ribbons to those of the urea adduct. There are two independent ribbons parallel to the b axis at z ≃ 0 and 1 \over 2, and three at z ≃ 1 \over 4 and 3 \over 4; the latter are crosslinked to form a layer structure by additional long N—H...S interactions, which each formally replace one branch of a bifurcated hydrogen-bond system.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 986
Author(s):  
Rim Boubakri ◽  
Mirosław Szybowicz ◽  
Mariola Sadej ◽  
Sarra Soudani ◽  
Frédéric Lefebvre ◽  
...  

Two new complexes, [Cu(dimpyr)2(H2O)2](NO3)2.2H2O (1) and (Hamdimpy)2[CoCl4].H2O (2), with the monodentate ligand 2-amino-6-methylpyrimidin-4-(1H)-one (dimpyr) and the countercation 4-amino-2,6-dimetylpyrimidium (Hamdimpy), respectively, were prepared and characterized by single crystal X-ray diffraction, elemental analysis and IR spectroscopy. In (1), the Cu(II) cation is tetracoordinated, in a square plan fashion, by two nitrogen atoms from the pyrimidine ring of the organic ligand and two oxygen atoms of two coordinated water molecules. In the atomic arrangement, the CuO2N2 square planes are interconnected via the formation of O-H…O hydrogen bonds involving both coordinated and free water molecules and NO3− nitrate anions to form inorganic layers parallel to the (a, b) plane at z = (2n + 1)/4. In (2), the central atom Co(II) is four-coordinated in a distorted tetrahedral fashion by four Cl− ions. The [CoCl4]2− tetrahedra are arranged parallel to the plane (110) at x = (2n + 1)/2 and the organic cations are grafted between them by establishing with them hydrogen bonds of CH…Cl and NH…Cl types. The vibrational absorption bands were identified by infrared and Raman spectroscopy. Intermolecular interactions were investigated via Hirshfeld surfaces and electronic properties such as HOMO and LUMO energies were derived. The two compounds were characterized by thermal analysis to determine their thermal behavior with respect to temperature.


Author(s):  
Graham Smith ◽  
Urs D. Wermuth

In the structure of the brucinium salt of 4-aminophenylarsonic acid (p-arsanilic acid), systematically 2,3-dimethoxy-10-oxostrychnidinium 4-aminophenylarsonate tetrahydrate, (C23H27N2O4)[As(C6H7N)O2(OH)]·4H2O, the brucinium cations form the characteristic undulating and overlapping head-to-tail layered brucine substructures packed along [010]. The arsanilate anions and the water molecules of solvation are accommodated between the layers and are linked to them through a primary cation N—H...O(anion) hydrogen bond, as well as through water O—H...O hydrogen bonds to brucinium and arsanilate ions as well as bridging water O-atom acceptors, giving an overall three-dimensional network structure.


IUCrData ◽  
2018 ◽  
Vol 3 (8) ◽  
Author(s):  
Błażej Dziuk ◽  
Anna Jezuita

The asymmetric unit of the title compound, C10H9N2 +·0.5C2O4 2−·C2H2O4·H2O, consists of a 2,2′-bipyridinium cation, half an oxalate dianion, one oxalic acid and one water molecule. One N atom in 2,2′-bipyridine is unprotonated, while the second is protonated and forms an N—H...O hydrogen bond. In the crystal, the anions are connected with surrounding acid molecules and water molecules by strong near-linear O—H...O hydrogen bonds. The water molecules are located between the anions and oxalic acids; their O atoms participate as donors and acceptors, respectively, in O—H...O hydrogen bonds, which form sheets arranged parallel to the ac plane.


Molbank ◽  
10.3390/m1052 ◽  
2019 ◽  
Vol 2019 (1) ◽  
pp. M1052 ◽  
Author(s):  
Chien Yeo ◽  
Edward Tiekink

The title compound, 1-[N-methyl-N-(phenyl)amino]-3-(4-methylphenyl)thiourea (1), was synthesized by the reaction of 1-methyl-1-phenyl hydrazine and 4-tolyl isothiocyanate, and was characterized by spectroscopy (1H and 13C{1H} NMR, IR, and UV), elemental analysis as well as by single crystal X-ray crystallography. In the solid state, the molecule exists as the thioamide tautomer and features an anti-disposition of the thioamide–N–H atoms; an intramolecular N–H⋯N hydrogen bond is noted. The molecular conformation resembles that of the letter L. In the molecular packing, thioamide-N1–H⋯S1(thione) hydrogen bonds lead to centrosymmetric eight-membered {⋯HNCS}2 synthons. The dimers are assembled into a supramolecular layer in the bc-plane by phenyl- and methyl-C–H⋯π(phenyl) interactions.


2019 ◽  
Vol 31 (8) ◽  
pp. 1755-1761
Author(s):  
K. Naresh ◽  
B.N. Sivasankar

A new copper complex of pyridine-2,6-dicarboxylate containing hydrazinium cation, formulated as (N2H5)2[Cu(PDC)2]·4H2O (PDC = pyridine-2,6-dicarboxylate) has been synthesized from copper(II) nitrate, hydrazine hydrate and pyridine-2,6-dicarboxylic acid as a single crystal and characterized by elemental analysis and spectroscopic (IR and UV-visible), thermal (TG/DTG), single crystal X-ray diffraction and biological studies. A six-coordinate complex with a distorted octahedral geometry around Cu(II) ion is proposed and confirmed by X-ray single crystal method. The structure reveals that two pyridine-2,6-dicarboxylate species acting as tridentate ligands and hydrazinium cation present as a counter ion along with non-coordinated four water molecules. The structural units of copper(II) is mutually held by the hydrogen bonds and π···π and C–O···π interactions. The copper(II) complex is connected to one another via O–H···O hydrogen bonds, forming water clusters, which plays an important role in the stabilization of the crystal structure. In the water clusters, the water molecules are trapped by the cooperative association of coordination interactions as well as hydrogen bonds. Both cation and anion interactions and crystal from various types of intermolecular contacts and their importance were explored using Hirshfeld surface analysis. This indicates that O···H/H···O interactions are the superior interactions conforming excessive H-bond in the molecular structure. The interaction of copper(II) complex with calf thymus DNA (CT-DNA) was investigated by electronic absorption spectroscopic technique. The electronic evidence strongly shows that the compound interacts with calf thymus through intercalation with a binding constant of Kb = 5.7 × 104 M–1.


2014 ◽  
Vol 70 (5) ◽  
pp. o549-o549
Author(s):  
Yohsuke Nikawa ◽  
Kyoko Fujita ◽  
Keiichi Noguchi ◽  
Hiroyuki Ohno

In the crystal structure of the title compound, C5H14NO4P·H2O, the zwitterionic phosphocholine molecules are connected by an O—H...O hydrogen bond between the phosphate groups, forming a zigzag chain along theb-axis direction. The chains are further connected through O—H...O hydrogen bonds involving water molecules, forming a layer parallel to (101). Three and one C—H...O interactions are also observed in the layer and between the layers, respectively. The conformation of the N—C—C—O backbone isgauchewith a torsion angle of −75.8 (2)°


2012 ◽  
Vol 68 (5) ◽  
pp. o209-o212 ◽  
Author(s):  
Barbara Wicher ◽  
Krystian Pyta ◽  
Piotr Przybylski ◽  
Ewa Tykarska ◽  
Maria Gdaniec

Rifampicin belongs to the family of naphthalenic ansamycin antibiotics. The first crystal structure of rifampicin in the form of the pentahydrate was reported in 1975 [Gadret, Goursolle, Leger & Colleter (1975).Acta Cryst.B31, 1454–1462] with the rifampicin molecule assumed to be neutral. Redetermination of this crystal structure now shows that one of the phenol –OH groups is deprotonated, with the proton transferred to a piperazine N atom, confirming earlier spectroscopic results that indicated a zwitterionic form for the molecule, namely (2S,12Z,14E,16S,17S,18R,19R,20R,21S,22R,23S,24E)-21-acetyloxy-6,9,17,19-tetrahydroxy-23-methoxy-2,4,12,16,18,20,22-heptamethyl-8-[(E)-N-(4-methylpiperazin-4-ium-1-yl)formimidoyl]-1,11-dioxo-1,2-dihydro-2,7-(epoxypentadeca[1,11,13]trienimino)naphtho[2,1-b]furan-5-olate pentahydrate, C43H58N4O12·5H2O. The molecular structure of this antibiotic is stabilized by a system of four intramolecular O—H...O and N—H...N hydrogen bonds. Four of the symmetry-independent water molecules are arrangedviahydrogen bonds into helical chains extending along [100], whereas the fifth water molecule forms only one hydrogen bond, to the amide group O atom. The rifampicin molecules interactviaO—H...O hydrogen bonds, generating chains along [001]. Rifampicin pentahydrate is isostructural with recently reported rifampicin trihydrate methanol disolvate.


2003 ◽  
Vol 59 (6) ◽  
pp. 794-801 ◽  
Author(s):  
John A. Cowan ◽  
Judith A. K. Howard ◽  
Garry J. McIntyre ◽  
Samuel M.-F. Lo ◽  
Ian D. Williams

The 1:2 adduct of benzene-1,2,4,5-tetracarboxylic acid and 4,4′-bipyridyl at 100 K has been studied by single-crystal neutron diffraction at 20, 200 and 296 K. The structure contains two short, strong N...O hydrogen bonds: one O—H...N hydrogen bond [O...N 2.6104 (17) Å at 20 K] and one short N—H...O hydrogen bond [N...O 2.5220 (17) Å at 20 K]. The N—H distance in the N—H...O hydrogen bond changes from 1.207 (3) Å at 20 K to 1.302 (4) Å at 296 K and the N...O distance increases to 2.5315 (16) Å at 296 K. At 200 K the H atom lies in an intermediate position 1.251 (6) Å from the N atom with an N...O separation of 2.520 (4) Å. The O—H...N hydrogen bond, on the other hand, does not change with temperature.


Sign in / Sign up

Export Citation Format

Share Document