A new polymorph of bis(2-aminopyridinium) fumarate–fumaric acid (1/1) from powder X-ray diffraction

Author(s):  
Shuichao Dong ◽  
Yaqiu Tao ◽  
Xiaodong Shen ◽  
Zhigang Pan

A new polymorph of bis(2-aminopyridinium) fumarate–fumaric acid (1/1), 2C5H7N2+·C4H2O42−·C4H4O4, was obtained and its crystal structure determined by powder X-ray diffraction. The new polymorph (form II) crystallizes in the triclinic system (space groupP\overline{1}), while the previous reported polymorph [form I; Ballabh, Trivedi, Dastidar & Suresh (2002).CrystEngComm,4, 135–142; Büyükgüngör, Odabaşoğlu, Albayrak & Lönnecke (2004).Acta Cryst.C60, o470–o472] is monoclinic (space groupP21/c). In both forms I and II, the asymmetric unit consists of one 2-aminopyridinium cation, half a fumaric acid molecule and half a fumarate dianion. The fumarate dianion is involved in hydrogen bonding with two neighbouring 2-aminopyridinium cations to form a hydrogen-bonded trimer in both forms. In form II, the hydrogen-bonded trimers are interlinked across centres of inversionviapairs of N—H...O hydrogen bonds, whereas such trimers are joinedviasingle N—H...O hydrogen bonds in form I, leading to different packing modes for forms I and II. The results demonstrate the relevance and application of the powder diffraction method in the study of polymorphism of organic molecular materials.

2005 ◽  
Vol 60 (9) ◽  
pp. 978-983 ◽  
Author(s):  
Sevim Hamamci ◽  
Veysel T. Yilmaz ◽  
William T. A. Harrison

Two new saccharinato-silver(I) (sac) complexes, [Ag(sac)(ampy)] (1), and [Ag2(sac)2(μ-aepy)2] (2), [ampy = 2-(aminomethyl)pyridine, aepy = 2-(2-aminoethyl)pyridine], have been prepared and characterized by elemental analysis, IR spectroscopy, thermal analysis and single crystal X-ray diffraction. Complexes 1 and 2 crystallize in the monoclinic space group P21/c and triclinic space group P1̄, respectively. The silver(I) ions in both complexes 1 and 2 exhibit a distorted T-shaped AgN3 coordination geometry. 1 consists of individual molecules connected into chains by N-H···O hydrogen bonds. There are two crystallographically distinct dimers in the unit cell of 2 and in each dimer, the aepy ligands act as a bridge between two silver(I) centers, resulting in short argentophilic contacts [Ag1···Ag1 = 3.0199(4) Å and Ag2···Ag2 = 2.9894(4) Å ]. Symmetry equivalent dimers of 2 are connected by N-H···O hydrogen bonds into chains, which are further linked by aromatic π(py)···π(py) stacking interactions into sheets.


2000 ◽  
Vol 55 (6) ◽  
pp. 495-498 ◽  
Author(s):  
Katerina E. Gubina ◽  
Vladimir A. Ovchynnikov ◽  
Vladimir M. Amirkhanov ◽  
Viktor V. Skopenkoa ◽  
Oleg V. Shishkinb

N,N′-Tetramethyl-N"-benzoylphosphoryltriamide (I) and dimorpholido-N-benzoylphosphorylamide (II), and their sodium salts Nal, Nall were synthesized and characterized by means of IR and 1H, 31P NMR spectroscopy. The structures of I, II were determined by X-ray diffraction: I monoclinic, space group P2i/c with a = 10.162(3), b= 11.469(4), c = 12.286(4) Å , β = 94.04°, V = 1428.4(8) A 3, Z = 4, p(calcd) = 1.187 g/cm3; II monoclinic, space group C2/c with a = 15.503(4), b = 10.991(3), c = 22.000(6) Å, β = 106.39°, V = 3596.3(17) Å3, Z = 8, p(calcd.) = 1.253 g/cm3. The refinement of the structures converged at R = 0.0425 for I, and R = 0.068 for II. In both structures the molecules are connected into centrosymmetric dimers via hydrogen bonds formed by the phosphorylic oxygen atoms and hydrogen atoms of amide groups.


1995 ◽  
Vol 50 (4) ◽  
pp. 699-701 ◽  
Author(s):  
Norbert W. Mitzel ◽  
Jürgen Riede ◽  
Klaus Angermaier ◽  
Hubert Schmidbaur

The solid-state structure of N,N-dibenzylhydroxylamine (1) has been determined by single crystal X-ray diffraction. The compound crystallizes in the monoclinic space group P 21/n with four formula units in the unit cell. N,N-dibenzylhydroxylamine dimerizes to give N2O2H2 sixmembered rings as a result of the formation of two hydrogen bonds O - H ··· N in the solid state.


2010 ◽  
Vol 65 (12) ◽  
pp. 1462-1466 ◽  
Author(s):  
Michaela K. Meyer ◽  
Jürgen Graf ◽  
Guido J. Reiß

[Me(HO)2P-(CH2)10-P(O)OHMe]2[I3]2・MeHO(O)P-(CH2)10-P(O)OHMe (1) was synthesized and characterized by IR, Raman and NMR spectroscopy. Its structure was determined by singlecrystal X-ray diffraction (T = 100 K; space group P1̄). The structure consists of decane-1,10-diyl-bis- (methylphosphinic acid) molecules and the analogous mono-protonated cations in a ratio 1:2 connected with each other by strong O-H···O hydrogen bonds to form a two-dimensional network. Between these hydrogen-bonded layers, there are elongated cavities each containing two triiodide anions. The intermolecular I· · · I distance of the two enclosed triiodide anions is 3.6317(4) Å and should be considered as an interhalogen bonding interaction.


2019 ◽  
Vol 10 (4) ◽  
pp. 409-416 ◽  
Author(s):  
Shahobiddin Adizov ◽  
Bakhodir Tashkhodjaev

The single crystal X-ray diffraction method established the absolute configuration of the Vinca erecta indole alkaloids of the akuammidine sarpagine type (3S, 5S, 15R, 16R) and its o-acyl derivative, as well as the type of ajmaline, quebrachidine (2S, 3S, 5S, 7R, 15S, 16R, 17S) and majoridine (2R, 3S, 5S, 7R, 15R, 16S, 17R). Crystal data for C21H24N2O3 (1): orthorhombic, space group P212121 (no. 19), a = 6.3949(5) Å, b = 13.5009(10) Å, c = 22.461(3) Å, Z = 4, 7694 reflections measured (7.64° ≤ 2Θ ≤ 152.294°), 3813 unique (Rint = 0.0798) which were used in all calculations. The final R1 was 0.0680 (I > 2σ(I)) and wR2 was 0.1650 (all data). Crystal data for C23H26N2O4 (2): orthorhombic, space group P212121 (no. 19), a = 9.9730(13) Å, b = 10.2090(10) Å, c = 20.409(3) Å, Z = 4, 7959 reflections measured (8.666° ≤ 2Θ ≤ 151.998°), 4212 unique (Rint = 0.0386) which were used in all calculations. The final R1 was 0.0477 (I > 2σ(I)) and wR2 was 0.1171 (all data). Crystal data for C42H48N4O6 (3): monoclinic, space group P21 (no. 4), a = 8.9320(10) Å, b = 21.515(5) Å, c = 9.5420(10) Å, β = 97.103(10)°, Z = 2, 16677 reflections measured (9.34° ≤ 2Θ ≤ 151.836°), 7393 unique (Rint = 0.0278) which were used in all calculations. The final R1 was 0.0366 (I > 2σ(I)) and wR2 was 0.1037 (all data). Crystal data for C23H28N2O3 (4): orthorhombic, space group P212121 (no. 19), a = 10.636(2) Å, b = 11.208(12) Å, c = 16.725(13) Å, Z = 4, 1650 reflections measured (9.498° ≤ 2Θ ≤ 119.97°), 1650 unique (Rint = 0.0436) which were used in all calculations. The final R1 was 0.0608 (I > 2σ(I)) and wR2 was 0.1720 (all data). In alkaloids such as sarpagine and ajmaline exo, the substituents of alkaloids do not lead to conformational changes of a stable polycyclic framework. In the series of sarpagine, alkaloids form mono-salts in the tetrahedral nitrogen N4, and in indolines of the ajmaline type, the tetrahedral hybridization of the N1 and N4 atoms favors the formation of disols. In V. erecta alkaloids, the exomethylene fragment (C18-C19=C20-C21) of the polycyclic backbone always takes on the E-state.


2014 ◽  
Vol 70 (6) ◽  
pp. o699-o699
Author(s):  
Wei-Wei Fu ◽  
Yan-Fei Liang ◽  
Yang Liu ◽  
Xiao-Ming Zhu

The title compound, C20H14N4, is a new polymorph of the previously reported structures, which were orthorhombic, space groupPbca[Beiet al.(2000).Acta Cryst.C56, 718–719] and monoclinic, space groupP21/c[Duddet al.(2003).Green Chem.5, 187–192]. The asymmetric unit consists of two independent molecules in which the dihedral angels between the central benzene ring and the outer benzimidazole ring systems are 16.81 (10) and 14.23 (10)° in one molecule and 26.09 (10) and 37.29 (10)° in the other. In the crystal, molecules are linked by N—H...N and C—H...N hydrogen bonds into a tape running along thec-axis direction.


2020 ◽  
Vol 76 (7) ◽  
pp. 681-689
Author(s):  
Wojciech Nitek ◽  
Agnieszka Kania ◽  
Henryk Marona ◽  
Anna M. Waszkielewicz ◽  
Ewa Żesławska

Four crystal structures of 2-amino-N-(dimethylphenoxyethyl)propan-1-ol derivatives, characterized by X-ray diffraction analysis, are reported. The free base (R,S)-2-amino-N-[2-(2,3-dimethylphenoxy)ethyl]propan-1-ol, C13H21NO2, 1, crystallizes in the space group P21/n, with two independent molecules in the asymmetric unit. The hydrochloride, (S)-N-[2-(2,6-dimethylphenoxy)ethyl]-1-hydroxypropan-2-aminium chloride, C13H22NO2 +·Cl−, 2c, crystallizes in the space group P21, with one cation and one chloride anion in the asymmetric unit. The asymmetric unit of two salts of 2-picolinic acid, namely, (R,S)-N-[2-(2,3-dimethylphenoxy)ethyl]-1-hydroxypropan-2-aminium pyridine-2-carboxylate, C13H22NO2 +·C6H4NO2 −, 1p, and (R)-N-[2-(2,6-dimethylphenoxy)ethyl]-1-hydroxypropan-2-aminium pyridine-2-carboxylate, C13H22NO2 +·C6H4NO2 −, 2p, consists of one cation and one 2-picolinate anion. Salt 1p crystallizes in the triclinic centrosymmetric space group P\overline 1, while salt 2p crystallizes in the space group P41212. The conformations of the amine fragments are contrasted and that of 2p is found to have an unusual antiperiplanar arrangement about the ether group. The crystal packing of 1 and 2c is dominated by hydrogen-bonded chains, while the structures of the 2-picolinate salts have hydrogen-bonded rings as the major features. In both salts with 2-picolinic acid, the specific R 1 2(5) hydrogen-bonding motif is observed. Structural studies have been enriched by the generation of fingerprint plots derived from Hirshfeld surfaces.


2001 ◽  
Vol 57 (5) ◽  
pp. 697-704 ◽  
Author(s):  
Andrzej Katrusiak

The third polymorph (denoted MH3) of maleic hydrazide (3,6-dihydroxypyridazine in the monolactim form, 6-hydroxy-3-pyridazinone, C4H4N2O2) has been studied by X-ray diffraction and shown to be monoclinic, space group P21/n. Polymorph MH3 was found as the prevailing form along with the rare triclinic polymorph MH1, space group P\bar 1, but they were obtained separately from monoclinic MH2, space group P21/c. The structure of MH1, previously studied by photographic methods, has been redetermined. Polymorph MH3 exhibits the same scheme of molecular association into hydrogen-bonded ribbons as in MH1 and MH2, but the arrangements of the aggregates and details of their supramolecular conformations are different. The accommodation of the supramolecular conformations to the requirements of close packing of the aggregates in crystal lattices, as well as the symmetries of the polymorphs, are analyzed.


2015 ◽  
Vol 71 (5) ◽  
pp. 394-401 ◽  
Author(s):  
Ioana Sovago ◽  
Andrew D. Bond

Three new crystalline phases are reported for the drug niclosamide [5-chloro-N-(2-chloro-4-nitrophenyl)-2-hydroxybenzamide], C13H8Cl2N2O4. A new high-Z′ polymorph (denoted Form II) is described, with four molecules in the asymmetric unit in the space groupP2/n. The structure exhibits pseudosymmetry, including local translations and screw-type operations. The niclosamide molecules are linked by O—H...O hydrogen bonds into chains, and the chains are packed so that the molecules form face-to-face (stacking) and end-to-end interactions within layers perpendicular to the chains. There are two different layer arrangements, giving a structure that is relatively complex. In the acetone and acetonitrile solvates, the incorporated solvent molecules accept hydrogen bonds from the OH groups of niclosamide, and the niclosamide molecules are stacked in a face-to-face manner. In the acetone solvate, C13H8Cl2N2O4·C3H6O, V-shaped arrangements are formed in which the nitrobenzene ends of the niclosamide molecules are brought into face-to-face contact. In the acetonitrile solvate, C13H8Cl2N2O4·CH3CN, stacking occurs by translation along a short axis (ca3.8 Å) and the crystals are frequently observed to be twinned by twofold rotation around that axis. The acetonitrile molecules occupy channels in the structure. A complete structure is provided for niclosamide monohydrate, C13H8Cl2N2O4·H2O, polymorph HA, obtained by Rietveld refinement against laboratory powder X-ray diffraction data. It has been suggested that this compound is related to the methanol solvate of niclosamide [Harriss, Wilson & Radosevljevic Evans (2014).Acta Cryst.C70, 758–763], but it is found that the two are not fully isostructural: they contain isostructural two-dimensional layers, but the layers are arranged differently in the two structures. This suggests that HAmay have the potential for polytypism, and features in the Rietveld difference curve indicate that a polytype fully isostructural with the methanol solvate might be present.


2018 ◽  
Vol 74 (7) ◽  
pp. 856-862 ◽  
Author(s):  
Ewa Żesławska ◽  
Wojciech Nitek ◽  
Henryk Marona ◽  
Anna M. Waszkielewicz

Aminoalkanol and aroxyalkyl derivatives are known as potential anticonvulsants. Two new salts, namely bis{(R,S)-N-[2-(2,6-dimethylphenoxy)ethyl]-1-hydroxypropan-2-aminium} succinate (1s), C13H22NO2 +·0.5C4H4O4 2−, and bis{(S)-(+)-N-[2-(2,6-dimethylphenoxy)ethyl]-1-hydroxypropan-2-aminium} succinate (2s), C13H22NO2 +·0.5C4H4O4 2−, have been prepared and characterized by single-crystal X-ray diffraction. The N atoms are protonated by proton transfer from succinic acid. Salt 1s crystallizes in the space group P21/n with one cation and half an anion in the asymmetric unit across an inversion centre, while (2s) crystallizes in the space group P21 with four cations and two anions in the asymmetric unit. The hydroxy group of the cation of 1s is observed in two R/S disorder positions. The crystals of these two salts display similar supramolecular architectures (i.e. two-dimensional networks), built mainly by intermolecular N+—H...Oδ− and O—H...Oδ− hydrogen bonds, where `δ−' represents a partial charge. The succinate anions are engaged in hydrogen bonds, not only with protonated N atoms, but also with hydroxy groups.


Sign in / Sign up

Export Citation Format

Share Document