A General Maximum-Entropy Method for Model-Free Reconstructions of Magnetization Densities from Polarized Neutron Diffraction Data

Author(s):  
P. Schleger ◽  
A. Puig-Molina ◽  
E. Ressouche ◽  
O. Rutty ◽  
J. Schweizer
2014 ◽  
Vol 70 (a1) ◽  
pp. C106-C106
Author(s):  
Niels Bindzus ◽  
Sebastian Christensen ◽  
Mogens Christensen ◽  
Bo Iversen

Thermoelectric materials are functional materials with the unique ability to interconvert heat and electricity, holding much promise for green energy solutions such as efficient waste heat recovery. The extraordinary thermoelectric performance of binary lead chalcogenides has caused huge research activity, but the mechanisms governing their unexpected low thermal conductivity still remain a controversial topic. It has been proposed to result from giant anharmonic phonon scattering or from local fluctuating dipoles on the Pb site, emerging with temperature on the Pb site.[1,2] No macroscopic symmetry change are associated with these effects, rendering them invisible to conventional crystallographic techniques. For this reason lead chalcogenides were until recently believed to adopt the ideal, undistorted rock-salt structure. In the present study, we probe the peculiar structural features in PbX (X = S, Se, Te) using multi-temperature synchrotron powder X-ray diffraction data in combination with the maximum entropy method. Distorted atoms are detected and quantified by refinement of anharmonic probability density functions. The charge density analysis is complemented by nuclear density distributions (NDDs) reconstructed from neutron diffraction data and by a novel method: Nuclear Enhanced X-ray Maximum Entropy Method (NEXMEM). NEXMEM offers an alternative route to experimental NDDs, exploiting the superior quality of synchrotron X-ray data compared to neutron diffraction data. The increased atomic resolution introduced by NEXMEM proved essential for resolving atomic distortions, see figure below showing Pb in the (100) plane. Our findings outline the extent of disorder and anharmonicity in binary lead chalcogenides, promoting our fundamental understanding of this class of high-performance thermoelectric materials. The applied approach can be used in general, opening up for widespread characterization of subtle features in crystals with unusual properties.


2001 ◽  
Vol 691 ◽  
Author(s):  
B. B. Iversen ◽  
A. Bentien ◽  
A. E. C. Palmqvist ◽  
D. Bryan ◽  
G. D. Stucky ◽  
...  

ABSTRACTMulti-temperature (15, 100, 150, 200, 300, 450, 600, 900 K) single crystal neutron diffraction data on the type I clathrate Ba8Ga16Si30 are analyzed with the maximum entropy method to obtain direct space nuclear densities. The nuclear densities suggest that the guest atoms are structurally disordered, and the disorder appears to be temperature dependent with increased host-guest interaction at high temperatures.


1991 ◽  
Vol 35 (A) ◽  
pp. 77-83 ◽  
Author(s):  
Makoto Sakata ◽  
Masaki Takata ◽  
Yoshiki Kubota ◽  
Tatsuya Uno ◽  
Shintaro Kuhazawa ◽  
...  

AbstractThe electron density distribution maps for CaF2 and TiO2 (rutile) were obtained from profile fitting of powder diffraction data by a Maximum Entropy Method (MEM) analysis. The resultant electron density maps show clearly the nature of the chemical bonding. In order to interpret the results, the nuclear density distribution was also obtained for rutile from powder neutron diffraction data. In the electron density map for rutile obtained by HEM analysis from the X-ray data, both apical and equatorial bonding can be seen. On the other hand, the nuclear density of rutile Is very simple and shows the thermal vibration of nuclei.


2014 ◽  
Vol 70 (a1) ◽  
pp. C105-C105
Author(s):  
Sebastian Christensen ◽  
Niels Bindzus ◽  
Mogens Christensen ◽  
Bo Brummerstedt Iversen

We introduce a novel method for reconstructing nuclear density distributions (NDDs): Nuclear Enhanced X-ray Maximum Entropy Method (NEXMEM). NEXMEM offers an alternative route to experimental NDDs, exploiting the superior quality of synchrotron X-ray data compared to neutron data. The method was conceived to analyse local distortions in the thermoelectric lead chalcogenides, PbX (X = S, Se, Te). Thermoelectric materials are functional materials with the unique ability to interconvert heat and electricity, holding much promise for green energy solutions such as waste heat recovery. The extraordinary thermoelectric performance of binary lead chalcogenides has caused huge research activity, but the mechanisms governing their unexpected low thermal conductivity still remain a controversial topic. It has been proposed to result from giant anharmonic phonon scattering or from local fluctuating dipoles on the Pb site.[1,2] No macroscopic symmetry change are associated with these effects, rendering them invisible to conventional crystallographic techniques. For this reason PbX was until recently believed to adopt the ideal, undistorted rock-salt structure. In the present study, we investigate PbX using multi-temperature synchrotron powder X-ray diffraction data in combination with the maximum entropy method (MEM) and NEXMEM. In addition NEXMEM has been validated by testing against simulated powder diffraction data of PbTe with known displacements of Pb. The increased resolution of NEXMEM proved essential for resolving Pb-displacement of 0.2 Å in simulated data. The figure below shows Pb in the (100) plane for MEM, NEXMEM and the actual NDD of the test structure. Our findings outline the extent of disorder in lead chalcogenides, promoting our understanding of this class of high-performance thermoelectric materials. Furthermore we introduce NEXMEM which can be used for widespread characterization of subtle atomic features in crystals with unusual properties.


Sign in / Sign up

Export Citation Format

Share Document