Structure prediction as a tool for solution of the crystal structures of metallo-organic complexes using powder X-ray diffraction data

2002 ◽  
Vol 58 (2) ◽  
pp. 233-243 ◽  
Author(s):  
Andrew D. Bond ◽  
William Jones

A simulated-annealing direct-space approach has been applied to predict the crystal structures of a series of metallo-organic complexes containing Zn, Cu and Ni. The prediction methodology generates a set of energetically reasonable crystal structures among which the actual structure is present, but it is not always possible to specify unambiguously the known crystal structure solely on the basis of energy. In each case, however, the ambiguity may be resolved by recourse to laboratory powder X-ray diffraction (PXRD) data. In this manner, structure prediction is shown to be a powerful tool for structure solution using PXRD data, with the additional advantage that indexing of the PXRD profile is not required at the outset.

2019 ◽  
Vol 19 (11) ◽  
pp. 6058-6066 ◽  
Author(s):  
Doris E. Braun ◽  
Arianna Rivalta ◽  
Andrea Giunchi ◽  
Natalia Bedoya-Martinez ◽  
Benedikt Schrode ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 807
Author(s):  
Ilya V. Kornyakov ◽  
Sergey V. Krivovichev

Single crystals of two novel shchurovskyite-related compounds, K2Cu[Cu3O]2(PO4)4 (1) and K2.35Cu0.825[Cu3O]2(PO4)4 (2), were synthesized by crystallization from gaseous phase and structurally characterized using single-crystal X-ray diffraction analysis. The crystal structures of both compounds are based upon similar Cu-based layers, formed by rods of the [O2Cu6] dimers of oxocentered (OCu4) tetrahedra. The topologies of the layers show both similarities and differences from the shchurovskyite-type layers. The layers are connected in different fashions via additional Cu atoms located in the interlayer, in contrast to shchurovskyite, where the layers are linked by Ca2+ cations. The structures of the shchurovskyite family are characterized using information-based structural complexity measures, which demonstrate that the crystal structure of 1 is the simplest one, whereas that of 2 is the most complex in the family.


2005 ◽  
Vol 38 (6) ◽  
pp. 861-866 ◽  
Author(s):  
Detlef Walter Maria Hofmann ◽  
Ludmila Kuleshova

A new similarity index for automated comparison of powder diagrams is proposed. In contrast to traditionally used similarity indices, the proposed method is valid in cases of large deviations in the cell constants. The refinement according to this index closes the gap between crystal structure prediction and automated crystal structure determination. The opportunities of the new procedure have been demonstrated by crystal structure solution of un-indexed powder diagrams of some organic pigments (PY111, PR181 and Me-PR170).


Author(s):  
William W. Brennessel ◽  
John E. Ellis

The reaction of the [K(18-crown-6)(thf)2]1+ (thf is tetrahydrofuran) salt of bis(anthracene)ferrate(−1), or [Fe(C14H10)2]−, with 2,6-dimethylphenyl isocyanide (CNXyl) in thf resulted in the formation of two new iron isocyanide complexes, namely, [(1,2,3,4-η)-anthracene]tris(2,6-dimethylphenyl isocyanide)iron, [Fe(C14H10)(C9H9N)3] or [Fe(1,2,3,4-η-C14H10)(CNXyl)3], and {5,6-bis(2,6-dimethylanilino)-3-(2,6-dimethylphenyl)-1,2,7-tris[(2,6-dimethylphenyl)imino]-3-azoniahept-3-ene-1,4,7-triido}tris(2,6-dimethylphenyl isocyanide)iron tetrahydrofuran disolvate, [Fe(C54H56N6)(C9H9N)3]·2C4H8O or [Fe(C54H56N6)(CNXyl)3]·2C4H8O, which were characterized by single-crystal X-ray diffraction. The former is likely an intermediate along the path to the known homoleptic [Fe(CNXyl)5], while the latter contains a tridentate ligand that is formed from the `coupling' of six CNXyl ligands. A third crystal structure from this reaction, (7-methylindol-1-ido-κN)(1,4,7,10,13,16-hexaoxacyclooctadecane-κ6 O)potassium, [K(C9H8N)(C12H24O6)] or [K(C9H8N)(18-crown-6)], contains a 7-methylindol-1-ide anion, in which one CNXyl ligand has shed a proton during its reductive cyclization.


Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 181 ◽  
Author(s):  
Peter Paufler ◽  
Stanislav K. Filatov

At the dawn of crystal structure analysis, the close personal contact between researchers in Russia and Germany, well documented in the “Zeitschrift für Krystallographie und Mineralogie”, contributed significantly to the evolution of our present knowledge of the crystalline state. The impact of the Russian crystallographer E. S. Fedorov upon German scientists such as A. Schoenflies and P. Groth and the effect of these contacts for Fedorov are highlighted hundred years after the death of the latter. A creative exchange of ideas paved the way for the analysis of crystal structures with the aid of X-ray diffraction.


1990 ◽  
Vol 43 (10) ◽  
pp. 1697 ◽  
Author(s):  
GA Bowmaker ◽  
PC Healy ◽  
LM Engelhardt ◽  
JD Kildea ◽  
BW Skelton ◽  
...  

The crystal structures of [Cu(Pme3)4]X (X = Cl , Br, I) and of [M(PPh3)4] [PF6] (M = Cu, Ag) have been determined by single-crystal X-ray diffraction methods at 295 K. The former compounds contain nearly tetrahedral [Cu(PMe3)4]+ ions on sites of m symmetry with mean Cu-P bond lengths of 2.270, 2.271 and 2.278 Ǻ for X = Cl , Br and I respectively. The latter compounds contain [M(PPh3)4]+ ions on sites of 3 symmetry. In the M =Ag complex the coordination environment is close to tetrahedral, but in the M =Cu complex the length of the axial Cu-P bond [2.465(2)Ǻ] is significantly shorter than that of the off-axis bonds [2.566(2)Ǻ]. Possible reasons for this are discussed.


2004 ◽  
Vol 126 (22) ◽  
pp. 7071-7081 ◽  
Author(s):  
Maryjane Tremayne ◽  
Leanne Grice ◽  
James C. Pyatt ◽  
Colin C. Seaton ◽  
Benson M. Kariuki ◽  
...  

2015 ◽  
Vol 71 (11) ◽  
pp. 1325-1327 ◽  
Author(s):  
Maxim Bykov ◽  
Elena Bykova ◽  
Vadim Dyadkin ◽  
Dominik Baumann ◽  
Wolfgang Schnick ◽  
...  

Hitherto, phosphorus oxonitride (PON) could not be obtained in the form of single crystals and only powder diffraction experiments were feasible for structure studies. In the present work we have synthesized two polymorphs of phosphorus oxonitride, cristobalite-type (cri-PON) and coesite-type (coe-PON), in the form of single crystals and reinvestigated their crystal structures by means of in house and synchrotron single-crystal X-ray diffraction. The crystal structures ofcri-PON andcoe-PON are built from PO2N2tetrahedral units, each with a statistical distribution of oxygen and nitrogen atoms. The crystal structure of thecoe-PON phase has the space groupC2/cwith seven atomic sites in the asymmetric unit [two P and three (N,O) sites on general positions, one (N,O) site on an inversion centre and one (N,O) site on a twofold rotation axis], while thecri-PON phase possesses tetragonalI-42dsymmetry with two independent atoms in the asymmetric unit [the P atom on a fourfold inversion axis and the (N,O) site on a twofold rotation axis]. In comparison with previous structure determinations from powder data, all atoms were refined with anisotropic displacement parameters, leading to higher precision in terms of bond lengths and angles.


Author(s):  
Hidetomo Hongu ◽  
Akira Yoshiasa ◽  
Massimo Nespolo ◽  
Tsubasa Tobase ◽  
Makoto Tokuda ◽  
...  

Petzite, Ag3AuTe2, crystallizes in the space group I4132, which is a Sohncke type of space group where chiral crystal structures can occur. The structure refinement of petzite reported long ago [Frueh (1959). Am. Mineral. 44, 693–701] did not provide any information about the absolute structure. A new single-crystal X-ray diffraction refinement has now been performed on a sample from Lake View Mine, Golden Mile, Kalgoorlie, Australia, which has resulted in a reliable absolute structure [a Flack parameter of 0.05 (3)], although this corresponds to the opposite enantiomorph reported previously. The minimum Te–Te distance is 3.767 (3) Å, slightly shorter than the van der Waals bonding distance, which suggests a weak interaction between the two chalcogens. XANES spectra near the Au and Te L III edges suggest that the chemical-bonding character of Au in petzite is more metallic than in other gold minerals.


1984 ◽  
Vol 37 (5) ◽  
pp. 921 ◽  
Author(s):  
PC Healy ◽  
JM Patrick ◽  
AH White

The crystal structures of the title compounds, [Ni(OH2)4(en)] [SO4].2H2O, (1), and [Ni(OH2)4(bpy)]- [SO4].2H2O, (2), have been determined by single-crystal X-ray diffraction methods at 295 K, being refined by full matrix least-squares methods to residuals of 0.028,0.031 for 1852, 4323 independent 'observed' reflections respectively. Crystals of (1) are monoclinic, C2/c, a 9.459(4), b 12.192(7), c 12.294(3) �, β 119.84(4)�, Z 4. In the cation, Ni-N is 2.061(2) �; Ni-O (trans to O, N respectively) are 2.106(2), 2.063(2) �. Instead of being enlarged above 90� as predicted from repulsion theory, the angle between the pair of oxygen atoms trans to nitrogen is diminished, being 87 14(7)�. Crystals of (2) are triclinic, P1, a 11.476(5), b 9.351(5), c 7.793(4) �, α 77.63(4), β 83.52(3), γ87.40(4)�, Z 2. In the cation, Ni-N are both 2.063(2) �. Ni-O (trans to N, O respectively) are 2.060(2), 2.O42(2); 2.O80(2), 2�. The short Ni-O distance [2.042(2)�] is associated with the coordination of a trigonal water molecule.


Sign in / Sign up

Export Citation Format

Share Document